精英家教网 > 高中数学 > 题目详情

【题目】已知k∈R, =(k,1), =(2,4),若| |< ,则△ABC是钝角三角形的概率是( )
A.
B.
C.
D.

【答案】D
【解析】解:∵| |=
∴﹣3<k<3,
= =(2﹣k,3),
<0,即2k+4<0,解得﹣3<k<﹣2,
<0,即k(k﹣2)﹣1×3<0,解得﹣1<k<3,
<0,即2(2﹣k)+3×4<0,解得k>8舍去,
∴△ABC是钝角三角形的概率P= =
故选:D
【考点精析】根据题目的已知条件,利用几何概型的相关知识可以得到问题的答案,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数),记的导函数为.

(1) 证明:当时, 上的单调函数;

(2)若处取得极小值,求的取值范围;

(3)设函数的定义域为,区间.若上是单调函数,则称上广义单调.试证明函数上广义单调.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(n)是定义在N*上的增函数,f(4)=5,且满足:

①任意n∈N*,f(n) Z;②任意mn∈N*,有f(m)f(n)=f(mn)+f(mn-1).

(1)求f(1),f(2),f(3)的值;

(2)求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心(a,b)(a<0,b<0)在直线y=2x+1上的圆,若其圆心到x轴的距离恰好等于圆的半径,在y轴上截得的弦长为 ,则圆的方程为( )
A.(x+2)2+(y+3)2=9
B.(x+3)2+(y+5)2=25
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对两个变量y和x进行回归分析,得到一组样本数据:(x1 , y1),(x2 , y2),…,(xn , yn),则下列说法中不正确的是(
A.由样本数据得到的回归方程 = x+ 必过样本中心(
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好
D.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有5张编号依次为1,2,3,4,5的卡片,这5张卡片除号码外完全相同,现进行有放回的连续抽取两次,每次任意地取出一张卡片.
(1)求出所有可能结果数,并列出所有可能结果;
(2)求条件“取出卡片的号码之和不小于7或小于5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角中,∠,D、E分别是AB、BC边的中点,沿DE将折起至,且∠.

(Ⅰ)求四棱锥F-ADEC的体积;

(Ⅱ)求证:平面ADF⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 的左右焦点,A为双曲线的右顶点,线段AF2的垂直平分线交双曲线与P,且|PF1|=3|PF2|,则该双曲线的离心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题中其中真命题个数是(  )

为了了解800名学生的成绩,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k40

线性回归直线 恒过样本点的中心

随机变量ξ服从正态分布N2σ2)(σ0),若在(﹣1)内取值的概率为0.1,则在(23)内的概率为0.4

若事件满足关系,则事件互斥.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案