精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知等差数列的首项,公差.且分别是等比数列

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列对任意自然数均有成立,求 的值.

 

【答案】

(1) , 

(2)

【解析】

试题分析:.(Ⅰ)∵a2=1+d a5=1+4d a14=1+13da2a5a14成等比数列

      ……………………………2分

                 ……………………………4分

又∵. 

 ∴                     ……………………………6分

(Ⅱ)∵         ①   

 即

     ②    

①-②:                  ……………………………8分

 

∴                  ……………………………10分

               ……………………………12分

考点:等差数列和等比数列的知识。

点评:求解数列的通项公式主要是求解基本元素首项和公差(或公比),同时能利用整体的思想求解数列的通项公式,结合求和方法得到结论,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题

(本题满分12分)已知△的三个内角所对的边分别为.,且.(1)求的大小;(2)若.求.

查看答案和解析>>

科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题

(本题满分12分)已知各项均为正数的数列
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题

(本题满分12分)

已知椭圆的长轴长是短轴长的倍,是它的左,右焦点.

(1)若,且,求的坐标;

(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程.

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量

(1)求椭圆的离心率

(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

 

查看答案和解析>>

同步练习册答案