精英家教网 > 高中数学 > 题目详情
已知f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+2.
(1)求f(x)的单调增区间;
(2)令g(x)=f(x)-kx(k∈R),如果g(x)图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,AB的中点为G(x0,0),问g(x)在x=x0处是否取得极值.
分析:(1)依题意,可求得f′(x)=
a
x
-2bx,由f′(2)=
a
2
-4b,f(2)=aln2-4b,由曲线在点P(2,f(2))处的切线方程为y=-3x+2ln2+2可求得a,b;由
f′(x)=
2
x
-2x>0
x>0
即可求得f(x)的单调增区间;
(2)依题意,可求得g′(x)=
2
x
-2x-k,假设结论g(x)在x=x0处取极值,由g′(x)=0成立⇒ln
x1
x2
=
2•
x1
x2
-2
x1
x2
+1
,令t=
x1
x2
,u(t)=lnt-
2t-2
t+1
(0<t<1),利用导数可求u(t)在(0,1)上是增函数,从而导出矛盾,于是可得g(x)在x=x0处不是极值点.
解答:解:(1)f′(x)=
a
x
-2bx…1分
f′(2)=
a
2
-4b,f(2)=aln2-4b,
a
2
-4b=-3,且aln2-4b=-6+2ln2+2,
解得a=2,b=1…2分
f′(x)=
2
x
-2x>0
x>0
解得0<x<1,
∴f(x)的单调增区间是(0,1)…4分
(2)g(x)=2lnx-x2-kx(k∈R),
g′(x)=
2
x
-2x-k…5分
假设结论g(x)在x=x0处取极值,则g′(x)=0成立,则有
2lnx1-x12-kx1=0    (1)
2lnx2-x22-kx2=0   (2)
x1+x2=2x0               (3)
2
x0
-2x0-k=0            (4)

(1)-(2),得2ln
x1
x2
-(x12-x22)-k(x1-x2)=0,
∴k=
2ln
x1
x2
x1-x2
-2x0
由(4)得k=
2
x0
-2x0
ln
x1
x2
x1-x2
=
1
x0

ln
x1
x2
x1-x2
=
2
x1+x2

即ln
x1
x2
=
2•
x1
x2
-2
x1
x2
+1
(5)…10
令t=
x1
x2
,u(t)=lnt-
2t-2
t+1
(0<t<1),
∵u′(t)=
(t-1)2
t(t+1)2
>0,
∴u(t)在(0,1)上是增函数,
∴u(t)<u(1)=0,
∴lnt-
2t-2
t+1
<0,
∴(5)式不成立,与假设矛盾,…11分
故g(x)在x=x0处不是极值点…12分
点评:本题考查利用导数研究曲线上某点切线方程,利用导数研究函数的单调性与极值,突出构造函数思想与等价转化思想的考查,考查抽象思维与创新思维能力.属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f′(x)是f(x)的导函数,f(x)=ln(x+1)+m-2f′(1),m∈R,且函数f(x)的图象过点(0,-2).
(1)求函数y=f(x)的表达式;
(2)设g(x)=
1x
+aln(x+1)-2a
在点(1,g(1))处的切线与y轴垂直,求g(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=aln(x-1),g(x)=x2+bx,F(x)=f(x+1)-g(x),其中a,b∈R.
(Ⅰ)若y=f(x)与y=g(x)的图象在交点(2,k)处的切线互相垂直,求a,b的值;
(Ⅱ)若x=2是函数F(x)的一个极值点,x0和1是F(x)的两个零点,且x0∈(n,n+1)n∈N,求n;
(Ⅲ)当b=a-2时,若x1,x2是F(x)的两个极值点,当|x1-x2|>1时,求证:|F(x1)-F(x)|>3-4ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)满足下面两个条件,求a的取值范围.
①在(-∞,1]上存在极值,
②对于任意的θ∈R,c∈R直线l:xsinθ+2y+c=0都不是函数y=f(x)(x∈(-1,+∞))图象的切线;
(2)若点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))从左到右依次是函数y=f(x)图象上三点,且2x2=x1+x3,当a>0时,△ABC能否是等腰三角形?若能,求△ABC面积的最大值;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数 f(x)=x2+2lnx+aln(1+x2).
(I)若a=-
92
求f(x)的极值;
(II)已知f(x)有两个极值点x1,x2,且x1<x2
(i) 求a的取值范围
(ii)求证:f(x1)<1-4ln2
(III) a=0时,求证[f'(x)]n-2n-1f'(xn)≥2n(2n-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=[3ln(x+2)-ln(x-2)]

    (Ⅰ)求x为何值时,f(x)在[3,7]上取得最大值;

(Ⅱ)设F(x)=aln(x-1)-f(x),若F(x)是单调递增函数,求a的取值范围。

查看答案和解析>>

同步练习册答案