精英家教网 > 高中数学 > 题目详情

在△中,若,则△的形状是(     )

A.锐角三角形              B.直角三角形      

C.钝角三角形              D.不能确定

 

【答案】

C

【解析】本试题主要是考查了余弦定理和正弦定理的综合运用,判定三角形的形状 。

因为在△中,若,利用正弦定理可知,故a2+b2-c2<0,那么根据余弦定理,可知角C为钝角,因此△的形状是钝角三角形,选C.

解决该试题的关键是化角为边,然后结合余弦定理得到结论。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•卢湾区一模)已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是an =
a   n为正奇数
b    n为正偶数
,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=
1
2
,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<
π
2
,求该数列的一个通项公式bn

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省高三12月月考文科数学试卷(解析版) 题型:选择题

中,若,则的形状是(    )

A.正三角形         B.等腰三角形

C.直角三角形       D.等腰直角形

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是数学公式,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=数学公式,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<数学公式,求该数列的一个通项公式bn

查看答案和解析>>

科目:高中数学 来源:2012年上海市卢湾区高考数学一模试卷(理科)(解析版) 题型:解答题

已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<,求该数列的一个通项公式bn

查看答案和解析>>

科目:高中数学 来源:2012年上海市卢湾区高考数学一模试卷(文科)(解析版) 题型:解答题

已知数列{bn},若存在正整数T,对一切n∈N*都有bn+r=bn,则称数列{bn}为周期数列,T是它的一个周期.例如:
数列a,a,a,a,…①可看作周期为1的数列;
数列a,b,a,b,…②可看作周期为2的数列;
数列a,b,c,a,b,c,…③可看作周期为3的数列…
(1)对于数列②,它的一个通项公式可以是,试再写出该数列的一个通项公式;
(2)求数列③的前n项和Sn
(3)在数列③中,若a=2,b=,c=-1,且它有一个形如bn=Asin(ωn+φ)+B的通项公式,其中A、B、ω、φ均为实数,A>0,ω>0,|φ|<,求该数列的一个通项公式bn

查看答案和解析>>

同步练习册答案