精英家教网 > 高中数学 > 题目详情
9.方程|log2(x+2)|=k.
(1)若方程有两解,求k的范围;
(2)若方程仅有一解,求k的值;
(3)若方程的根为x1,x2,试问x1,x2与-2,-1的大小关系.

分析 作函数y=|log2(x+2)|的图象,利用数形结合的思想直接写出答案即可.

解答 解:作函数y=|log2(x+2)|的图象如下,

结合图象可知,
(1)当k>0时,方程有两解,
(2)当k=0时,方程仅有一解;
(3)不妨设方程的根x1<x2,则结合图象可知,
-2<x1<-1<x2

点评 本题考查了学生的作图能力及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设△ABC内角A,B,C所对的边分为a,b,c,若cos(3π-B)=-$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)若a=4,b=$\sqrt{13}$,求c的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{x+4,x≤0}\\{log_2x,x>0}\end{array}\right.$则不等式f(x)≤2的解集为{x|x≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列双曲线的焦点坐标和焦距:
(1)$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{9}=1$;
(2)$\frac{{y}^{2}}{25}-\frac{{x}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.写出下列函数的定义域、值域、单调增区间.
(1)y=0.7${\;}^{1+2x-{x}^{2}}$;
(2)y=($\frac{1}{3}$)${\;}^{\sqrt{1-{x}^{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ln$\frac{kx-1}{x-1}$(k>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在区间[10,+∞)上是增函数,求 实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=1ogax(a>0,且a≠1)在[2,4]上的最大值为M,最小值为N.
(1)若M+N=6,求实数a的值;
(2)若M-N=2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设A={x|x2-3x+2≤0},B={x|x2-ax+1≤0},且B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算:$\underset{lim}{n→∞}$$\sum_{i=1}^{n}$$\frac{1}{n}$•${(\frac{i}{n})}^{2}$=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案