精英家教网 > 高中数学 > 题目详情
选修4-5;不等式选讲.
已知a∈R,设关于x的不等式|2x-a|+|x+3|≥2x+4的解集为A.
(Ⅰ)若a=1,求A;
(Ⅱ)若A=R,求a的取值范围.
【答案】分析:(I)利用绝对值的几何意义,化去绝对值,解不等式,可得结论;
(II)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立,当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4,从而可求a的取值范围.
解答:解:(I)若a=1,则|2x-1|+|x+3|≥2x+4
当x≤-3时,原不等式可化为-3x-2≥2x+4,可得x≤-3
当-3<x≤时,原不等式可化为4-x≥2x+4,可得3x≤0
当x>时,原不等式可化为3x+2≥2x+4,可得x≥2
综上,A={x|x≤0,或x≥2};
(II)当x≤-2时,|2x-a|+|x+3|≥0≥2x+4成立
当x>-2时,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4
∴x≥a+1或x≤
∴a+1≤-2或a+1≤
∴a≤-2
综上,a的取值范围为a≤-2.
点评:本题考查绝对值不等式,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲:
设正有理数x是
2
的一个近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求证:y<
2

(Ⅱ)比较y与x哪一个更接近于
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)(选修4-5:不等式选讲)
已知a,b,c为正数,且a2+a2+c2=14,试求a+2b+3c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乌鲁木齐一模)选修4-5:不等式选讲
设函数,f(x)=|x-1|+|x-2|.
(I)求证f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范围.

查看答案和解析>>

同步练习册答案