精英家教网 > 高中数学 > 题目详情

【题目】已知数列 为其前项的和,满足

1)求数列的通项公式;

2)设数列的前项和为,数列的前项和为,求证:当

3)(理)已知当,且时有,其中,求满足的所有的值.

4)(文)若函数的定义域为,并且,求证

【答案】1 2)证明见解析 3 4)证明见解析

【解析】

1)根据和项与通项关系求解;

2)法一:根据定义直接化简,再对照,证得结果;法二,利用数学归纳法进行证明;

3)先根据叠加法得,再逐一验证,即得结果;

4)先根据定义域为,讨论分析得的取值范围,再根据极限确定的取值范围,即证得结果.

解:(1)当时,

,所以

(2)<法一>

<法二>:数学归纳法

时,

②假设时有

时,

是原式成立

由①②可知当

(3)、(理)

相加得,

时,无解

又当时;时,时,

时,为偶数,而为奇数,不符合

时,为奇数,而为偶数,不符合

综上所述或者

(4)、易知,否则若,则,与矛盾

因为函数的定义域为,所以恒不为零,

的值域为所以

时,,与矛盾,故

即有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点,轴的正半轴为极轴,建立极坐标系.点的极坐标为.

1)求曲线的极坐标方程;

2)若过点且倾斜角为的直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}{bn}满足:a1=an+bn=1bn+1=.

1)求a2a3

2)证数列为等差数列,并求数列{an}{bn}的通项公式;

3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSnbn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:极坐标与参数方程

已知在平面直角坐标系xOyO为坐标原点曲线C (α为参数)在以平面直角坐标系的原点为极点x轴的正半轴为极轴取相同单位长度的极坐标系直线lρ.

()求曲线C的普通方程和直线l的直角坐标方程;

()曲线C上恰好存在三个不同的点到直线l的距离相等分别求出这三个点的极坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).

(Ⅰ)求曲线上的点到直线的距离的最大值;

(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.

1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;

2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则之间的最远距离是多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)若,设,若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案