【题目】已知数列 ,为其前项的和,满足.
(1)求数列的通项公式;
(2)设数列的前项和为,数列的前项和为,求证:当时;
(3)(理)已知当,且时有,其中,求满足的所有的值.
(4)(文)若函数的定义域为,并且,求证.
【答案】(1) (2)证明见解析 (3)或 (4)证明见解析
【解析】
(1)根据和项与通项关系求解;
(2)法一:根据定义直接化简,再对照,证得结果;法二,利用数学归纳法进行证明;
(3)先根据叠加法得时,再逐一验证,即得结果;
(4)先根据定义域为,讨论分析得的取值范围,再根据极限确定的取值范围,即证得结果.
解:(1)当时,
又 ,所以
(2)、<法一> ,,
<法二>:数学归纳法
①时,,
②假设时有
当时,
是原式成立
由①②可知当时;
(3)、(理),
相加得,
,
时,无解
又当时;,时,;时,
时,为偶数,而为奇数,不符合
时,为奇数,而为偶数,不符合
综上所述或者
(4)、易知,否则若,则,与矛盾
因为函数的定义域为,所以恒不为零,
而的值域为所以,
又时,,与矛盾,故
且
,
即有。
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点,轴的正半轴为极轴,建立极坐标系.设点的极坐标为.
(1)求曲线的极坐标方程;
(2)若过点且倾斜角为的直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于A,B两点
(I)求曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}、{bn}满足:a1=,an+bn=1,bn+1=.
(1)求a2,a3;
(2)证数列为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
已知在平面直角坐标系xOy中,O为坐标原点,曲线C: (α为参数),在以平面直角坐标系的原点为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系,直线l:ρ.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)曲线C上恰好存在三个不同的点到直线l的距离相等,分别求出这三个点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,点的极坐标为,直线的极坐标方程为,且过点,曲线的参数方程为 (为参数).
(Ⅰ)求曲线上的点到直线的距离的最大值;
(Ⅱ)过点与直线平行的直线与曲线 交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.
(1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;
(2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则,之间的最远距离是多少海里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com