精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,对任意,点都在函数的图象上.

(1),归纳数列的通项公式(不必证明).

(2)将数列依次按项、项、项、项、项循环地分为,各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.

(3)为数列的前项积,若不等式对一切都成立,其中,求的取值范围.

【答案】1 23012 3

【解析】

1)求得,分别令23,进而归纳出数列的通项公式;

2)写出几个循环数,可得每一次循环记为一组,由每一个循环含有5个括号,故是第20组中第5个括号内的数之和,每一个循环中含有15个数,20个循环具有300个数,计算可得所求和;

3)由题意可得原不等式即为对一切都成立,

,则只需,判断数列的单调性,可得最大值,解不等式即可得到所求的范围.

因为点在函数的图象上,故

所以

,得,所以

,得,所以

,得,所以

由此猜想:.

因为,所以数列依次按项、项、项、项、项循环地分为

每一次循环记为一组.由于每一个循环含有个括号,故是第组中第个括号内各数之和,每个循环中有个数,个循环共有个数.

,所以.

3)因为

所以

对一切都成立,

就是,则只需即可

由于,所以

是单调递减,

于是解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,,点分别是棱的中点,点的重心.

1)证明:平面

2)若与平面所成的角为,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为4,且过点.

1)求椭圆的标准方程;

2)设为椭圆上一点,过点轴的垂线,垂足为,取点,连接,过点的垂线交轴于点,点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆一定有唯一的公共点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长均相等的四棱锥, 为底面正方形的中心, ,分别为侧棱,的中点,有下列结论正确的有:( )

A.∥平面B.平面∥平面

C.直线与直线所成角的大小为D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆在圆外部且与圆相切,同时还在圆内部与圆相切.

1)求动圆圆心的轨迹方程;

2)记(1)中求出的轨迹为轴的两个交点分别为上异于的动点,又直线轴交于点,直线分别交直线两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,等比数列的前项和为,且

1)设,求数列的通项公式;

2)在(1)的条件下,且,求满足的所有正整数

3)若存在正整数,且,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通项公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx)=2lnxax2+3x,其中aR

1)若f1)=2,求函数fx)的最大值;

2)若a=﹣1,正实数x1x2满足fx1+fx2)=0,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是(  )

A. 平面平面ABN B.

C. 平面平面AMN D. 平面平面AMN

查看答案和解析>>

同步练习册答案