精英家教网 > 高中数学 > 题目详情
15.若函数$f(x)=\frac{1}{x}+a$为奇函数,则实数a的值为0.

分析 利用函数的奇偶性直接列出方程求解即可.

解答 解:因为函数是奇函数,
所以f(-x)=-f(x),
即$-\frac{1}{x}+a=-(\frac{1}{x}+a)$,
解得a=0.
故答案为:0.

点评 本题考查函数的奇偶性的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知tanθ=2,其中$π<θ<\frac{3π}{2}$.
(1)求$\frac{sinθ+2cosθ}{2sinθ+cosθ}$值;             
(2)求$\frac{{cos(θ+4π){{cos}^2}(θ+π){{cos}^2}(θ+\frac{3π}{2})}}{{sin(θ-4π)sin(\frac{π}{2}+θ){{sin}^2}(θ-\frac{π}{2})}}$值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合X是实数集R的子集,如果x0∈R,满足:对任意a>0,都存在x∈X,使得0<|x-x0|<a,则称x0为集合X的聚点,现有如下四个集合:
①$\{\frac{2n+1}{n}|n∈Z,n≥2\}$②{x∈R|x≠1}③$\{\frac{n-1}{n}|n∈Z,n≥1\}$④整数集Z;
其中以1为聚点的集合是(  )
A.②③B.①④C.①③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={0,1},B={1,2,3},则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知t为常数,函数y=|x2-4x+t|在区间[0,3]上的最大值为3,则t=1或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设集合A={x|x2+2x-3<0},集合B={x||x+a|<1}.
(1)若a=3,求A∪B;
(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△ABC内接于⊙O,AE与⊙O相切于点A,BD平分∠ABC,交⊙O于点D,交AE的延长线于点E,DF⊥AE于点F.
(Ⅰ)求证:$\frac{AB}{AD}$=$\frac{AE}{DE}$;
(Ⅱ)求证:AC=2AF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax,a∈R.
(Ⅰ)若函数f(x)在x=0处的切线过点(1,0),求a的值;
(Ⅱ)若函数f(x)在(-1,+∞)上不存在零点,求a的取值范围;
(Ⅲ)若a=1,设函数$g(x)=\frac{1}{f(x)+ax}+\frac{4x}{{{e^x}-f(x)+4}}$,求证:当x≥0时,g(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四面体的四个顶点S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),求从顶点S向底面ABC所引高的长.

查看答案和解析>>

同步练习册答案