精英家教网 > 高中数学 > 题目详情
已知a,b为两条直线,α,β为两个平面,下列四个命题
①ab,aα⇒bα;②a⊥b,a⊥α⇒bα;
③aα,βα⇒aβ;④a⊥α,β⊥α⇒aβ,
其中不正确的有(  )
A.1个B.2个C.3个D.4个
对于①、②结论中还可能b?α,所以①、②不正确.
对于③、④结论中还可能a?β,所以③、④不正确.
故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=4,E为AD的中点,点P在线段C1E上,则点P到直线BB1的距离的最小值为(  )
A.2B.
10
C.
3
10
5
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点.
①求证:AN平面MBD;
②求二面角M-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:
(1)平面EFG平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,E∈BB1,F是AC的中点,截面A1EC⊥侧面AC1.求证:BF平面A1EC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图为一组合体,其底面ABCD为正方形,PD⊥平面ABCD,ECPD,且PD=AD=2EC=2
(Ⅰ)求证:BE平面PDA;
(Ⅱ)求四棱锥B-CEPD的体积;
(Ⅲ)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
1
3
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6.D、E分别是AC、AB上的点,且DEBC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(1)求证:BC平面A1DE;
(2)求证:BC⊥平面A1DC;
(3)当D点在何处时,A1B的长度最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果两个平面分别平行于第三个平面,那么这两个平面的位置关系(  )
A.平行B.相交C.异面D.以上都不对

查看答案和解析>>

同步练习册答案