精英家教网 > 高中数学 > 题目详情
4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与抛物线y2=-16x的准线交于A,B,且|AB|=6,则双曲线的离心率为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

分析 求出y2=-16x的准线l:x=4,由渐近线与抛物线y2=-16x的准线交于A,B两点,|AB|=6,从而得出A(4,3 ),B(4,-3),将A点坐标代入双曲线渐近线方程结合a,b,c的关系式得出a,c的关系,即可求得离心率.

解答 解:∵y2=-16x的准线l:x=4,
∵双曲线渐近线与抛物线y2=-16x的准线l:x=4交于A,B两点,|AB|=6,
∴A(4,3 ),B(4,-3),
将A点坐标代入双曲线渐近线方程得$\frac{b}{a}=\frac{3}{4}$,
∴b2=$\frac{9}{16}$a2⇒a2=c2-$\frac{9}{16}$a2
即25a2=16c2
则双曲线的离心率e为$\frac{5}{4}$.
故选:D.

点评 本题考查双曲线的性质和应用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.关于x的不等式ax-b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x-3)>0的解集是(  )
A.(-∞,-1)∪(3,+∞)B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥面ABCD.
(Ⅰ)证明PF⊥FD;
(Ⅱ)在PA上找一点G,使得EG∥平面PFD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在圆C中,点A,B在圆上,已知|AB|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值(  )
A.1B.2C.4D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$-(cos15°-$\sqrt{3}$)0+lg2+lg5
(2)已知tanα=-$\frac{1}{3}$,α∈($\frac{π}{2}$,π).化简$\frac{sin2α-co{s}^{2}α}{1+cos2α}$,并求值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)(x∈R)满足f(-x)=8-f(4+x),函数g(x)=$\frac{4x+3}{x-2}$,若函数f(x)与g(x)的图象共有168个交点,记作Pi(xi,yi)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为(  )
A.2018B.2017C.2016D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.i为虚数单位,则在复平面上复数z=-1+3i对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,Sn=2an-2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,cn=$\frac{1}{{b}_{n}{b}_{n+1}}$,记数列{cn}的前n项和为Tn,求 Tn
(Ⅲ)设dn=nan,记数列{dn}的前n项和为Gn,求Gn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,该几何体四个面中,面积最大的面积是(  )
A.8B.10C.6$\sqrt{2}$D.8$\sqrt{2}$

查看答案和解析>>

同步练习册答案