精英家教网 > 高中数学 > 题目详情
如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.

【答案】分析:建系,写出有关点的坐标,A,B,C,D,P,E,F,G,(1)要证面EFG⊥面PAB,只要证EF⊥面PAB,只要证EF⊥AP,EF⊥AB即可;
(2)要求异面直线EG与BD所成的角的余弦值,只要求所成角的余弦值即可;(3)求出面EFG的一个法向量,求点A到面EFG的距离实际上是求向量在面EFG的法向量上的投影的长度.
解答:解:建立如图所示的空间直角坐标系A-xyz,
则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),
P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
(1)证明:∵=(0,1,0),=(0,0,2),=(2,0,0),
=0×0+1×0+0×2=0,=0×2+1×0+0×0=0,
∴EF⊥AP,EF⊥AB.
又∵AP、AB?面PAB,且PA∩AB=A,
∴EF⊥平面PAB.
又EF?面EFG,∴平面EFG⊥平面PAB.
(2)解:∵

(3)解:设平面EFC的法向量=(x,y,z),

令z=0,得=(1,0,1).
=(0,0,1),
∴点A到平现EFG的距离
点评:考查利用空间向量证明垂直和求夹角和距离问题,以及面面垂直的判定定理,体现 了转化的思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M,N分别是AB,PC的中点.
(1)求二面角P-CD-B的大小;
(2)求证:平面MND⊥平面PCD;
(3)求点P到平面MND的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面AC,四边形ABCD是矩形,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B为45°,AD=2,CD=3,求点F到平面PCE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABC,AC⊥BC,AB=2,BC=
2
PB=
6

(1)证明:面PAC⊥平面PBC
(2)求二面角P-BC-A的大小
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•天津模拟)如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点
F是PB的中点,点E在边BC上移动,
(Ⅰ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,二面角P-DE-A的大小为45°?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成的角是30°,点F是PB的中点,点E在边BC上移动.
(1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并求出EF到平面PAC的距离;
(2)命题:“不论点E在边BC上何处,都有PE⊥AF”,是否成立,并说明理由.

查看答案和解析>>

同步练习册答案