精英家教网 > 高中数学 > 题目详情
14.已知正方形ABCD的边长为6,E为BC的 中点,则$\overrightarrow{AE}•\overrightarrow{BD}$=-18.

分析 由题意画出图形,得到对应点的坐标,然后利用数量积的坐标运算得答案.

解答 解:如图,分别以AB、AC所在直线为x、y轴建立平面直角坐标系,

则A(0,0),B(6,0),E(6,3),D(0,6).
∴$\overrightarrow{AE}=(6,3),\overrightarrow{BD}=(-6,6)$,
则$\overrightarrow{AE}•\overrightarrow{BD}$=-6×6+3×6=-18.
故答案为:-18.

点评 本题考查平面向量是数量积运算,建系使该题变得浅显易懂,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设n=${∫}_{0}^{\frac{π}{2}}$4sinxdx,则二项式(x-$\frac{1}{x}$)n的展开式的常数项是(  )
A.12B.6C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两个非零向量$\overrightarrow a$与$\overrightarrow b$不共线,
(1)若$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{BC}=2\overrightarrow a+8\overrightarrow b$,$\overrightarrow{CD}=3(\overrightarrow a-\overrightarrow b)$,求证:A、B、D三点共线;
(2)试确定实数k,使得$k\overrightarrow a+\overrightarrow b$与$\overrightarrow a+k\overrightarrow b$共线;
(3)若$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),$\overrightarrow c=\overrightarrow a+λ\overrightarrow b$,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某超市要将甲、乙两种大小不同的袋装大米分装成A,B两种规格的小袋,每袋大米可同时分得A,B两种规格的小袋大米的袋数如下表所示:
规格类型
袋装大米类型
AB
21
13
已知库房中现有甲、乙两种袋装大米的数量分别为5袋和10袋,市场急需A,B两种规格的成品数分别为15袋和27袋.
(Ⅰ)问分甲、乙两种袋装大米各多少袋可得到所需A,B两种规格的成品数,且使所用的甲、乙两种袋装大米的袋数最少?(要求画出可行域)
(Ⅱ)若在可行域的整点中任意取出一解,求其恰好为最优解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一元二次方程x2-(2m-1)x+m2-m=0的两根均大于0且小于2,则m的取值范围为1<m<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)满足f(-2)=f(4)=0,且f(x)在R上有最小值-9
(1)求f(x)的解析式    
(2)求不等式f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=-4cosθ.
(1)求曲线C1与C2交点的极坐标;
(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列有关函数性质的说法,不正确的是(  )
A.若f(x)为增函数,g(x)为增函数,则f(x)+g(x)为增函数
B.若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数
C.若f(x)为奇函数,g(x)为偶函数,则f(x)-g(x)为奇函数
D.若f(x)为奇函数,g(x)为偶函数,则|f(x)|-g(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}的前n项的和为Sn,对于任意的自然数an>0,4Sn=(an+1)2
(Ⅰ)求a1的值;
(Ⅱ)求证:数列{an}是等差数列,并求通项公式;
(Ⅲ)设bn=$\frac{{a}_{n}}{{3}^{n}}$,求和Tn=b1+b2+…+bn

查看答案和解析>>

同步练习册答案