精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}+1({a}_{n}≥\frac{1}{2})}\end{array}\right.$若a1=$\frac{6}{7}$,则a2015的值为-1+$\frac{13}{7}$•22014

分析 通过题意易知an>$\frac{1}{2}$,从而有an+1=2an+1,变形可知an+1+1=2(an+1),进而可知数列{an+1}是以$\frac{13}{7}$为首项、2为公比的等比数列,计算即得结论.

解答 解:依题意易知an>$\frac{1}{2}$,
∴an+1=2an+1,
∴an+1+1=2(an+1),
又∵a1+1=$\frac{6}{7}$+1=$\frac{13}{7}$,
∴数列{an+1}是以$\frac{13}{7}$为首项、2为公比的等比数列,
∴an+1=$\frac{13}{7}$•2n-1
∴an=-1+$\frac{13}{7}$•2n-1
∴a2015=-1+$\frac{13}{7}$•22014
故答案为:-1+$\frac{13}{7}$•22014

点评 本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知z=a+bi(a、b∈R+),|z|=$\sqrt{2}$.设z、$\frac{1}{z}$在复平面对应的点分别是A、B.
(1)设z′=cosθ+isinθ(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]),z•z′在复平面对应的点是A′,求向量$\overrightarrow{OA}$与$\overrightarrow{OA′}$的夹角;
(2)当△OAB(O为坐标原点)为直角三角形时,求a、b的值;
(3)当△ABC为等腰直角三角形(A、B、C按逆时针方向排列,∠B为直角时),求|OC|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求和:-$\frac{1}{2}$+1×$\frac{1}{4}$+3×$\frac{1}{8}$+…+(2n-1)×$\frac{1}{{2}^{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数a≠2且满足$\sqrt{(a-2)^2}$=2-a,则关于x的不等式ax+3<5+2x的解集是{x|x>$\frac{2}{a-2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在各项均为正数的数列{an}中,Sn为数列{an}的前n项和,Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)求其通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.七人按下列要求站成一排,分别有多少种不同的站法?
(1)甲、乙两个人不相邻:
(2)甲、乙两个人之间恰站两人:
(3)甲必须在乙的左边(可以不相邻).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且cosC=$\frac{1}{3}$,则△ABC周长的最小值为(  )
A.$\sqrt{6}$+$\sqrt{2}$B.$\sqrt{6}$+$\sqrt{3}$C.$\sqrt{5}$+$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{sinx,x≤1}\\{\frac{1}{x},x>1}\end{array}\right.$,则${∫}_{-1}^{e}$f(x)dx等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是奇函数,在(0,+∞)上是增函数.证明:f(x)在(-∞,0)上也是增函数.

查看答案和解析>>

同步练习册答案