精英家教网 > 高中数学 > 题目详情

【题目】某商品销售价格和销售量与销售天数有关,第x的销售价格(元/百斤),第x的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.

1)求第10天销售该商品的销售收入是多少?

2)这20天中,哪一天的销售收入最大?为多少?

【答案】(1)第10天的销售收入元(2)第2天该商品的销售收入最大, 最大为

【解析】

1)根据第7天的销售收入求得a,再代入销售量q中求第10天的销售收入;

2)由(1)求出的a值,分两个范围分别求出销售收入关于第x天的函数,再分别求出其函数的最大值,再比较每一段间最大值的大小,得解.

1)由已知得第7天的销售价格,销售量7天的销售收入(元)

所以销售量

所以:第10天的销售收入(元),

2)设第x天的销售收入为,则

时,

时取最大值

时,,当时取最大值

由于2天该商品的销售收入最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

(1)三名女生不能相邻,有多少种不同的站法?

(2)四名男生相邻有多少种不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?

(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号1,, ,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50人中,编号落入区间的人做问卷A,编号落入区间的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为( )

A. 12 B. 13 C. 14 D. 15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点 ,两个焦点与短轴的一个端点构成等边三角形.

)求椭圆的标准方程;

)过焦点 轴的垂线交椭圆上半部分于点,过点作椭圆的弦,设弦 所在的直线分别交轴于两点,若为等腰三角形时,问直线的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于定义在上的函数,其图象是连续不断的,且存在常数使得对任意实数都成立,则称是一个“特征函数”.下列结论中正确的个数为(  )

是常数函数中唯一的“特征函数”;

不是“特征函数”;

③“特征函数”至少有一个零点;

是一个“特征函数”.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为,且过点.

(1)求椭圆的标准方程;

(2)如图,点为椭圆上一动点(非长轴端点),的延长线与椭圆交于点的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数x R , e 为自然对数的底数).

判断函数 f x 的单调性与奇偶性;

⑵是否存在实数 t 使不等式对一切的 x R 都成立若存在,求出 t 的值 不存在说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面几何中,有边长为的正三角形内任意点到三边距离之和为定值.类比上述命题,棱长为的正四面体内任一点到四个面的距离之和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的参数方程是 (m>0,t为参数),曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线轴交于点,与曲线交于点,且,求实数的值.

查看答案和解析>>

同步练习册答案