精英家教网 > 高中数学 > 题目详情
若函数f(x)=ax3+2(a≠0)在[-6,6]上满足f(-6)>1,f(6)<1,试判断方程f(x)=1在[-6,6]内实数根的个数.
考点:函数的零点与方程根的关系
专题:计算题,函数的性质及应用
分析:由y=x3在R上单调递增可知,函数f(x)=ax3+2(a≠0)在[-6,6]上单调,结合f(-6)>1,f(6)<1,从而判断实数根的个数.
解答: 解:y=x3在R上单调递增可知,
函数f(x)=ax3+2(a≠0)在[-6,6]上单调,
又∵f(-6)>1,f(6)<1,
则在[-6,6]上,有且只有一个x,使f(x)=1;
即方程f(x)=1在[-6,6]内实数根有且只有一个.
点评:本题考查了方程的根的个数的判断,转化为函数的零点,结合函数的单调性判断,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,对于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,若f(-1)=2.
(1)求f(0),f(3)的值;
(2)求证:f(x)是R上的减函数;
(3)求不等式f(1-2x)+f(x)+6>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1-an=sin
(n+1)π
2
,记Sn为数列{an}的前n项和,则S2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求值或化简:
a-4b2
3ab2
(a>0,b>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)-loga(1-x),(a>0且a≠1).
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并予以证明;
(3)当a>0且a≠1时,求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知3sinx+2cosy=4,则2sinx+cosy的范围为(  )
A、[-3,3]
B、[
3
2
5
2
]
C、[
7
3
5
2
]
D、[
3
2
17
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2-
1
x
12的展开式的常数项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)=x2-2.
(1)求f(2)的值;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(e为自然对数的底数),a>0.
(Ⅰ)若函数f(x)恰有一个零点,证明:aa=ea-1
(Ⅱ)若f(x)≥0对任意x∈R恒成立,求实数a的取值集合.

查看答案和解析>>

同步练习册答案