精英家教网 > 高中数学 > 题目详情

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如表对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求广告费支出x与销售额y回归直线方程 =bx+a(a,b∈R);
已知b=
(2)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.

【答案】
(1)解:由题意得

所求回归直线方程为


(2)解:基本事件:(30,40),(30,60),(30,50),(30,70),

(40,60),(40,50),(40,70),(60,50),(60,70),(50,70)共10个

两组数据其预测值与实际值之差的绝对值都超过5:(60,50)

所以至少有一组数据其预测值与实际值之差的绝对值不超过5的概率为


【解析】(1)首先求出x,y的平均数,利用最小二乘法做出线性回归方程的系数,根据样本中心点满足线性回归方程,代入已知数据求出a的值,写出线性回归方程.(2)分别求出在已有的五组数据中任意抽取两组的情况总数,及至少有一组数据其预测值与实际值之差的绝对值不超过5的情况数,代入古典概型概率计算公式,可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知X和Y是两个分类变量,由公式K2= 算出K2的观测值k约为7.822根据下面的临界值表可推断(

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828


A.推断“分类变量X和Y没有关系”犯错误的概率上界为0.010
B.推断“分类变量X和Y有关系”犯错误的概率上界为0.010
C.有至少99%的把握认为分类变量X和Y没有关系
D.有至多99%的把握认为分类变量X和Y有关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是(
A.(0,
B.( ,e)
C.(0, ]
D.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f′′(x)是f′(x)的导数,若方程f′′(x)有实数解x0 , 则称点(x0 , f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数f(x)= x3 x2+3x﹣ ,请你根据这一发现,计算f( )+f( )+f( )+…+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业团队拟生产两种产品,根据市场预测, 产品的利润与投资额成正比(如图1),产品的利润与投资额的算术平方根成正比(如图2).(注: 利润与投资额的单位均为万元)

(1)分別将两种产品的利润表示为投资额的函数;

(2)该团队已筹集到10 万元资金,并打算全部投入两种产品的生产,问:当产品的投资额为多少万元时,生产两种产品能获得最大利润,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:

求分数在的频率及全班人数;

求分数在之间的频数,并计算频率分布直方图中间矩形的高;

若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列各组中两个函数是否为同一函数.
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=
(4)f(x)=|3﹣x|+1,g(x)=

查看答案和解析>>

同步练习册答案