精英家教网 > 高中数学 > 题目详情
5.有1999个集合,每个集合有45个元素,任意两个集合的并集有89个元素,问此1999个集合的并集有多少个元素.

分析 先确定任意两个集合有一个且只有一个共同的元素,再确定所有的共同元素都相等,即可得出结论.

解答 解:由题意,45+45-89=1,任意两个集合有一个且只有一个共同的元素.
假设集合A和B共同的元素是x,集合B和C共同的元素是y.
若x不等于y,则A和C共同的元素是另一个z 若z属于B,则AB和BC都有两个共同的元素,不成立
所以z不属于B,而这样的话,任意三个集合,他们两两的共同元素都不相同.
ABD三个集合中,BD共同的是w,这个w也不等于x ADE中,BE共同的是v,这个v也不等于x
以此类推,因为一共1999个集合,则除了AB还有1997,则会出现B和另一个集合的共同元素都不等于AB共同的x,而且有1997个,这显然和B只有45个元素矛盾
所以只能是AB共同的x和BC共同的y相等,
同理可得,所有的共同元素都相等,从而另外的44个都互不相等,
所以一共1999×44+1=87957个.

点评 本题考查并集及其运算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图数表,为一组等式:某学生根据上表猜测S2n-1=(2n-1)(an2+bn+c),老师回答正确,则a-b+c=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的首项a1=$\frac{3}{4}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n=1,2,3…
(1)证明:数列{$\frac{1}{{a}_{n}}$-1}是等比数列;
(2)是否存在互不相等的正整数m,s,t成等差数列,且am-1,as-1,at-1成等比数列?如果存在,求出所有符合条件的m,s,t,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}≤0}\right.}\right\}$,集合B={x||x+2a|≤a+1,a∈R}.
(1)求集合A与集合B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.M为△ABC的中线AD的中点,过点M的直线分别交两边AB,AC于点P,Q,设$\overrightarrow{AP}=x\overrightarrow{AB},\overrightarrow{AQ}=y\overrightarrow{AC}$,记y=f(x).
(1)求函数y=f(x)的表达式;
(2)求$\frac{{{S_{△APQ}}}}{{{S_{△ABC}}}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆心在直线2x+y=0上,且与直线x-y+1=0切与点P(2,-1)的圆的标准方程(x-1)2+(y+2)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于x的不等式${log_2}({x^2}-1)>{log_2}(-2x)$的解集为(-∞,-1$-\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的有(  )
A.①②③④B.①②③C.②③D.

查看答案和解析>>

同步练习册答案