精英家教网 > 高中数学 > 题目详情

【题目】设正项数列的前n项和为,已知

(1)求证:数列是等差数列,并求其通项公式

(2)设数列的前n项和为,且,若对任意都成立,求实数的取值范围.

【答案】(1)见证明;(2)

【解析】

1)首先求出,利用作差,化简即可得到为常数,进而可证明数列为等差数列,其首项为2,公差2,利用等差数列通项公式求出

2)结合(1)可得,利用裂项相消,即可求出数列的前项和为,代入,分离参数即可得到,分别为奇数和偶数是的范围即可.

(1)证明:∵,且

时,,解得

时,有,即.于是

,∴为常数

∴数列为首项,为公差的等差数列,∴

(2)由(1)可得:

,即对任意都成立

①当为偶数时,恒成立,

上为增函数,

②当为奇数时,恒成立,又为增函数,

∴由①②可知:

综上所述的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解我校高2017级本部和大学城校区的学生是否愿意参加自主招生培训的情况,对全年级2000名高三学生进行了问卷调查,统计结果如下表:

愿意参加

愿意参加

重庆一中本部校区

220

980

重庆一中大学城校区

80

720

1从愿意参加自主招生培训的同学中按分层抽样的方法抽取15人,则大学城校区应抽取几人;

2对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“如花姐”完全会答的有3题,不完全会的有2道,不完全会的每道题她得分概率满足:假设解答各题之间没有影响

①对于一道不完全会的题,求“如花姐”得分的均值

②试求“如花姐”在本次摸底考试中总得分的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5分)《九章算术》竹九节问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第五节的容积为( )

A. 1B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角梯形ABCD如图(1)所示,其中,过点B,垂足为M,得到面积为4的正方形ABMD,现沿BM进行翻折,得到如图(2)所示的四棱柱C-ABMD

1)求证:平面平面CDM

2)若,平面CBM与平面CAD所成锐二面角的余弦值为,求CM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面是正方形,平面,,的中点.

1)求证:平面平面;

2)求二面角的大小;

3)试判断所在直线与平面是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4正方体中,的中点,,点在正方体表面上移动,且满足,则点和满足条件的所有点构成的图形的面积是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,若,.

1)证明:当时,

2)求数列的通项公式;

3)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为6组,得到如图所示的频率分布直方图.

1)求a的值;

2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;

3)在抽取的100名理科生中,采用分层抽样的方法从成绩在内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在内的人数为X,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案