(在数学趣味知识培训活动中,甲、乙两名学生的6次培训成绩如下茎叶图所示:
(Ⅰ)从甲、乙两人中选择1人参加数学趣味知识竞赛,你会选哪位?请运用统计学的知识说明理由;
(II)从乙的6次培训成绩中随机选择2个,记被抽到的分数超过115分的个数为,试求的分布列和数学期望.
(I)选择乙;(II).
解析试题分析:(I)根据茎叶图,写出两个同学的成绩,对于这两个同学的成绩求出平均数,结果两人的平均数相等,再比较两个人的方差,得到乙的方差较小,这样可以派乙去,因为乙的成绩比较稳定.(II)由题意知本题是一个古典概型,试验发生包含的所有事件是从乙的6次培训成绩中随机选择2个,满足事件的恰好有2次,记被抽到的分数超过115分的个数为,由题意值可取0,1,2,根据古典概型的概率公式求出对应的概率,写出分布列,求出期望.
试题解析:(I);.
;.
所以,甲乙两方的平均水平一样,乙的方差小,乙发挥的更稳定,则选择乙.
(II); ;.
的分布列为:
所以数学期望.0 1 2
考点:1.茎叶图;2.平均数与方差;3.离散型随机变量及其分布列;4.期望.
科目:高中数学 来源: 题型:解答题
城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 | 候车时间 | 人数 |
一 | | 2 |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.
(1)下表是这次考试成绩的频数分布表,求正整数a, b的值;
区间 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人数 | 50 | a | 350 | 300 | b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在每年的春节后,某市政府都会发动公务员参与到植树活动中去.为保证树苗的质量,该市林管部门在植树前,都会在植树前对树苗进行检测.现从甲乙两种树苗中各抽测了10株树苗的高度,量出树苗的高度如下(单位:厘米):
甲:
乙:
(1)根据抽测结果,完成答题卷中的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的大小为多少?并说明的统计学意义.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在“2013魅力新邢台”青少年才艺表演评比活动中,参赛选手成绩的茎叶图和频率分布直方图,都受到不同程度的损坏,回答问题
(1)求参赛总人数和频率分布直方图中之间的矩形的高,并完成直方图;
(2)若要从分数在之间任取两份进行分析,在抽取的结果中,求至少有一份分数在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日 期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数颗 | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某中学高三年级从甲、乙两个班级各选出七名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,
(1)求x和y的值;
(2)计算甲班七名学生成绩的方差;
(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.
参考公式:方差其中
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校为了预防甲流感,每天上午都要对同学进行体温抽查。某一天,随机抽取甲、乙两个班级各10名同学,测量他们的体温如图:(单位0.1℃)
(1)哪个班所选取的这10名同学的平均体温高?
(2)一般℃为低热,℃为中等热,℃为高热。按此规定,记事件A为“从甲班发热的同学中任选两人,有中等热的同学”,记事件B为“从乙班发热的同学中任选两人,有中等热的同学”,分别求事件A和事件B的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各只,给每只鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机的捕出只鱼,记录下其中有记号的鱼的数目,立即放回池塘中。这样的记录做了次,并将记录获取的数据做成以下的茎叶图。
(Ⅰ)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;
(Ⅱ)为了估计池塘中鱼的总重量,现从中按照(Ⅰ)的比例对条鱼进行称重,据称重鱼的重量介于(单位:千克)之间,将测量结果按如下方式分成九组:第一组、第二组;……,第九组。右图是按上述分组方法得到的频率分布直方图的一部分。
①估计池塘中鱼的重量在千克以上(含千克)的条数;
②若第二组、第三组、第四组鱼的条数依次成公差为的等差数列,请将频率分布直方图补充完整;
③在②的条件下估计池塘中鱼的重量的众数、中位数及估计池塘中鱼的总重量;
(Ⅲ)假设随机地从池塘逐只有放回的捕出只鱼中出现鲤鱼的次数为,求的数学期望。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com