已知椭圆的由顶点为A,右焦点为F,直线与x轴交于点B且与直线交于点C,点O为坐标原点,,过点F的直线与椭圆交于不同的两点M,N.
(1)求椭圆的方程;
(2)求的面积的最大值.
(1);(2)
解析试题分析:(1)由直线与x轴交于点B且与直线交于点C, .即可得到关于的两个方程.从而得到结论.
(2)首先考虑直线MN垂直于x轴的情况,求出的面积.由(1)得到的方程联立直线方程,消去y得到一个关于x的方程,由韦达定理写出两个等式.由弦长公式即点到直线的距离公式,即可求出的面积的.再利用最值的求法,即可的结论.
试题解析:(1) 因为 , ,则且,得则
椭圆方程为:
(2) ①当直线与x轴不垂直时,设直线,
则消去得,
所以
记为到的距离,则,
所以
=
② 当轴时,,所以的面积的最大值为
考点:1.待定系数法求椭圆的方程.2.韦达定理.3.弦长公式.4.点到直线的距离公式.
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点到两个定点、的距离之和为,线段的长为.
(1)求动点的轨迹的方程;
(2)过点作直线与轨迹交于、两点,且点在线段的上方,
线段的垂直平分线为.
①求的面积的最大值;
②轨迹上是否存在除、外的两点、关于直线对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知A、B、C是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.
(1)求椭圆E的方程;
(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.
(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为M、N,若直线MN在x轴、y轴上的截距分别为m、n,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线关于轴对称,它的顶点在坐标原点,点、、均在抛物线上.
(1)写出该抛物线的方程及其准线方程;
(2)当与的斜率存在且倾斜角互补时,求的值及直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的两焦点、,离心率为,直线:与椭圆交于两点,点在轴上的射影为点.
(1)求椭圆的标准方程;
(2)求直线的方程,使的面积最大,并求出这个最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,
(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆C0:=1(a>b>0,a、b为常数),动圆C1:x2+y2=,b<t1<a.点A1、A2分别为C0的左、右顶点,C1与C0相交于A、B、C、D四点.
(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知过曲线上任意一点作直线的垂线,垂足为,且.
⑴求曲线的方程;
⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com