精英家教网 > 高中数学 > 题目详情
11.已知各项均为正数的数列{an}的前n项和为Sn,且Sn满足n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),则S1+S2+…+S2017=$\frac{2017}{2018}$.

分析 n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),可得[n(n+1)Sn-1](Sn+1)=0,Sn>0.可得Sn=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.利用“裂项求和”方法即可得出.

解答 解:∵n(n+1)Sn2+(n2+n-1)Sn-1=0(n∈N*),
∴[n(n+1)Sn-1](Sn+1)=0,Sn>0.
∴n(n+1)Sn-1=0,
∴Sn=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
∴S1+S2+…+S2017=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{2017}-\frac{1}{2018})$=$\frac{2017}{2018}$.
故答案为:$\frac{2017}{2018}$.

点评 本题考查了数列递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知三棱锥P-ABC,若PA,PB,PC两两垂直,且PA=2,PB=PC=1,则三棱锥P-ABC的外接球的表面积为6π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC,sin A:sin B:sin C=1:1:$\sqrt{2}$,则此三角形的最大内角的度数是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“对任意的x∈R,x2-x+1≥0”的否定是(  )
A.不存在x0∈R,x02-2x0+1≥0B.存在x0∈R,x02-2x0+1≤0
C.存在x0∈R,x02-2x0+1<0D.对任意的x∈R,x2-2x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点M是圆E:(x+1)2+y2=8上的动点,点F(1,0),O为坐标原点,线段MF的垂直平分线交ME于点P,则动点P的轨迹方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为类偶函数,则下列函数中为类偶函数的是(  )
A.f(x)=cosxB.f(x)=sinxC.f(x)=x2-2xD.f(x)=x3-2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某学校有2500名学生,其中高一1000人,高二900人,高三600人,为了了解学生的身体健康状况,采用分层抽样的方法,若从本校学生中抽取100人,从高一和高三抽取样本数分别为a,b,且直线ax+by+8=0与以A(1,-1)为圆心的圆交于B,C两点,且∠BAC=120°,则圆C的方程为(  )
A.(x-1)2+(y+1)2=1B.(x-1)2+(y+1)2=2C.(x-1)2+(y+1)2=$\frac{18}{17}$D.(x-1)2+(y+1)2=$\frac{12}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
 $\overline{x}$ $\overrightarrow{y}$ $\overline{w}$ $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$ (xi-$\overrightarrow{x}$)(yi-$\overline{y}$) $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
 46.6 563 6.8 289.8 1.6 1469 108.8
表中${w_i}=\sqrt{x_i}$,$\overline{w}=\frac{1}{8}\sum_{i=1}^8{w_i}$.
(1)根据散点图判断,y=a+bx与$y=c+d\sqrt{x}$哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(2)的结果要求:年宣传费x为何值时,年利润最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn)其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\hat β=\frac{{\sum_{i=1}^n{({{u_i}-\bar u})({{v_i}-\bar v})}}}{{\sum_{i=1}^n{{{({{u_i}-\bar u})}^2}}}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<0}\\{a{x}^{3}+(b-4a){x}^{2}-(4b+m)x+n,0≤x≤4}\\{a(lo{g}_{4}x-1),x>4}\end{array}\right.$,(其中a≠0)的图象不间断.
(1)求m,n的值;
(2)若a,b互为相反数,且f(x)是R上的单调函数,求a的取值范围;
(3)若a=1,b∈R,试讨论函数g(x)=f(x)+b的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案