精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx,g(x)= ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1 , C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行.

【答案】解:(Ⅰ)b=2时,h(x)=lnx﹣ ax2﹣2x,
则h′(x)= ﹣ax﹣2=﹣
因为函数h(x)存在单调递减区间,所以h'(x)<0有解.
又因为x>0时,则ax2+2x﹣1>0有x>0的解.
①当a>0时,y=ax2+2x﹣1为开口向上的抛物线,ax2+2x﹣1>0总有x>0的解;
②当a<0时,y=ax2+2x﹣1为开口向下的抛物线,而ax2+2x﹣1>0总有x>0的解;
则△=4+4a≥0,且方程ax2+2x﹣1=0至少有一正根.此时,﹣1<a<0.
综上所述,a的取值范围为(﹣1,0)∪(0,+∞).
(Ⅱ)设点P、Q的坐标分别是(x1 , y1),(x2 , y2),0<x1<x2
则点M、N的横坐标为x=
C1在点M处的切线斜率为k1= ,x= ,k1=
C2在点N处的切线斜率为k2=ax+b,x= ,k2= +b.
假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2
= +b,

= (x22﹣x12)+b(x2﹣x1
= (x22+bx2)﹣( +bx1
=y2﹣y1
=lnx2﹣lnx1
所以 = .设t= ,则lnt= ,t>1①
令r(t)=lnt﹣ ,t>1.则r′t= =
因为t>1时,r'(t)>0,所以r(t)在[1,+∞)上单调递增.故r(t)>r(1)=0.
则lnt> .这与①矛盾,假设不成立.
故C1在点M处的切线与C2在点N处的切线不平行
【解析】(Ⅰ)先求函数h(x)的解析式,因为函数h(x)存在单调递减区间,所以h'(x)<0有解,求出a的取值范围;(Ⅱ)先利用导数分别表示出函数在C1在点M处的切线与C2在点N处的切线,结合过线段PQ的中点作x轴的垂线分别交C1 , C2于点M、N,建立关系式,通过反证法进行证明即可.
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间 上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的右焦点作一条直线,直线与双曲线相交于两点,且,若有且仅有三条直线,则双曲线离心率的取值范围为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数a为常数

1)判断fx)在定义域内的单调性

2)若fx)在上的最小值为,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位需要从甲、乙两人中选拔一人参加新岗位培训,特别组织了5个专项的考试,成绩统计如下:

第一项

第二项

第三项

第四项

第五项

甲的成绩

81

82

79

96

87

乙的成绩

94

76

80

90

85

(1)根据有关统计知识,回答问题:若从甲、乙2人中选出1人参加新岗位培训,你认为选谁合适,请说明理由;

(2)根据有关概率知识,解答以下问题:

从甲、乙两人的成绩中各随机抽取一个,设抽到甲的成绩为,抽到乙的成绩为,用表示满足条件的事件,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某学科能力测试共有12万考生参加,成绩采用15级分,测试成绩分布图如图,试估计成绩高于11级分的人数为 (  )

A. 8 000 B. 10 000 C. 20 000 D. 60 000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知以下说法正确的是 _____.(填序号)

①甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;

③甲、乙两名运动员的成绩没有明显的差异;④甲运动员的最低得分为0分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P-ABC中,PC平面ABCPC=AC=2AB=BCDPB上一点,且CD平面PAB

(1)求证:AB平面PCB

(2)求异面直线APBC所成角的大小

(3)求二面角C-PA-B 的大小的余弦值

查看答案和解析>>

同步练习册答案