精英家教网 > 高中数学 > 题目详情

【题目】已知函数),

(1)求函数单调区间;

(2)当时,

①求函数上的值域;

②求证:,其中.(参考数据

【答案】(1)见解析;(2)②见解析.

【解析】试题分析: (1)先求导数,再研究导函数符号:当时,恒为正;当时,有正有负,根据符号规律确定单调区间,(2)①易得函数单调性:先减后增,故在极小值点处取最小值,最大值为两端点值的较大值,②由所证不等式的结构知,先研究数列求和:令,可得,再比较对应项大小:,这样转化为证明不等式,利用导数研究函数单调性,即可证得.

试题解析:(1)∵

①当时,单调递增;

②当时,令,得,即

上单调递减,在单调递增.

(2)时,

①由,令

单调递减,单调递增,且由

∴值域为

②由,设项和,

单调递减,,∴

,即时,

,故原不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额。此项税款按下表分段累计计算:

全月应纳税所得额

税率(%)

不超过1500元的部分

3

超过1500元至4500元的部分

10

超过4500元至9000元的部分

20

(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?

(2)假设某人的月收入为元, ,记他应纳税为元,求的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,求数列的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.

思路1:先设的值为1,根据已知条件,计算出_________ __________ _________

猜想: _______.

然后用数学归纳法证明.证明过程如下:

①当时,________________,猜想成立

②假设N*)时,猜想成立,即_______

那么,当时,由已知,得_________

,两式相减并化简,得_____________(用含的代数式表示).

所以,当时,猜想也成立.

根据①和②,可知猜想对任何N*都成立.

思路2:先设的值为1,根据已知条件,计算出_____________

由已知,写出的关系式: _____________________

两式相减,得的递推关系式: ____________________

整理: ____________

发现:数列是首项为________,公比为_______的等比数列.

得出:数列的通项公式____,进而得到____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(1)求f(2)与f, f(3)与f

(2)由(1)中求得结果,你能发现f(x)与f有什么关系?并证明你的发现;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f+f+…+f.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

时,甲走在最前面;

时,乙走在最前面;

,丁走在最前面,当时,丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 ,曲线 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.

(Ⅰ)求曲线 的极坐标方程;

(Ⅱ)曲线 为参数, )分别交 两点,当取何值时, 取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱底面为正三角形,分别中点

求证:

点,四棱锥体积为求三棱锥表面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比小于1的等比数列的前项和为

(1)求数列的通项公式;

(2)设,若,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)若底面ABCD为正方形,,求二面角C—AF—D大小.

查看答案和解析>>

同步练习册答案