精英家教网 > 高中数学 > 题目详情

已知△ABC中,三边长a,b,c满足a2-a-2b-2c=0,a+2b-2c+3=0,则这个三角形最大角的大小为________.

120°
分析:根据条件可得b=,c=,显然c>b,假设c=>a,解得 a<1或a>3,刚好符合,故最大边为c,由余弦定理求得cosC 的值,即可得到C 的值.
解答:把a2-a-2b-2c=0和a+2b-2c+3=0联立可得,b=,c=,显然c>b.
比较c与a的大小.
因为b=(a-3)(a+1)/4>0,解得a>3,(a<-1的情况很明显为负数舍弃了)
假设c=>a,解得 a<1或a>3,刚好符合,
所以c>a,所以最大边为c.
由余弦定理可得 c2=a2+b2-2ab•cosC,
=-2acosC,
解得cosC=-,∴C=120°,
故答案为:120°.
点评:本题主要考查余弦定理的应用,根据三角函数的值求角,判断最大边为c,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,三边的比为3:5:7,则△ABC中最大角是(  )
A、
π
2
B、
3
C、
4
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三边a,b,c所对的角分别为A,B,C,a2+b2-
2
ab=c2
,函数f(x)=2sinx(cosx+sinx).
(1)求f(x)的最小正周期及单调递减区间;
(2)求角C的大小;
(3)求f(
A
2
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设f(x)=
1
2x+
2
,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为
9
2
2

其中,结论正确的是
 
.(将所有正确结论的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三边长a,b,c满足a2-a-2b-2c=0,a+2b-2c+3=0,则这个三角形最大角的大小为
120°
120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列四个结论:
①已知△ABC中,三边a,b,c满足(a+b+c)(a+b-c)=3ab,则∠C等于120°.
②若等差数列an的前n项和为Sn,则三点(10,
S10
10
),(100,
S100
100
),(110,
S110
110
)
共线.
③等差数列an中,若S10=30,S20=100,则S30=210.
④设f(x)=
1
2x+
2
,则f(-8)+f(-7)+…+f(0)+…+f(8)+f(9)的值为
9
2
2

其中,结论正确的是 ______.(将所有正确结论的序号都写上)

查看答案和解析>>

同步练习册答案