【题目】定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)=(x﹣1)2 , 且当x≤1时,恒有f'(x)+2<x.若 ,则实数m的取值范围是( )
A.(﹣∞,1]
B.
C.[1,+∞)
D.
【答案】D
【解析】解:令g(x)=f(x)+2x﹣ , g′(x)=f′(x)+2﹣x,当x≤1时,恒有f'(x)+2<x.
∴当x≤1时,g(x)为减函数,
而g(2﹣x)=f(2﹣x)+2(2﹣x)﹣ ,
∴f(x)+f(2﹣x)=g(x)﹣2x+ +g(2﹣x)﹣2(2﹣x)+
=g(x)+g(2﹣x)+x2﹣2x﹣2=x2﹣2x+1.
∴g(x)+g(2﹣x)=3.
则g(x)关于(1,3)中心对称,则g(x)在R上为减函数,
由 ,得f(m)+2m ≥f(1﹣m)+2(1﹣m)﹣ ,
即g(m)≥g(1﹣m),
∴m≤1﹣m,即m .
∴实数m的取值范围是(﹣∞, ].
故选:D.
令g(x)=f(x)+2x﹣ ,求得g(x)+g(2﹣x)=3,则g(x)关于(1,3)中心对称,则g(x)在R上为减函数,再由导数可知g(x)在R上为减函数,化 为g(m)≥g(1﹣m),利用单调性求解.
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1 , C2的极坐标方程,并求出圆C1 , C2的交点坐标(用极坐标表示);
(2)求圆C1与C2的公共弦的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
①“若, 则互为相反数”的逆命题;
②“若两个三角形全等,则两个三角形的面积相等”的否命题;
③“若,则有实根”的逆否命题;
④“若不是等边三角形,则的三个内角相等”逆命题;
其中真命题为( ).
A. ①② B. ②③ C. ①③ D. ③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是函数 (),且)的图象上一点,等比数列的前项和为,数列 ()的首项为,且前项和满足: ().
(1).求数列和的通项公式;
(2).若数列的通项求数列的前项和;
(3).若数列前项和为,试问的最小正整数是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方形, , .以的中点为原点建立如图所示的平面直角坐标系.
(1)求以、为焦点,且过、两点的椭圆的标准方程;
(2)过点的直线交(1)中椭圆于、两点,是否存在直线,使得弦为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知在平面直角坐标系中,圆的参数方程为 (为参数)以轴为极轴, 为极点建立极坐标系,在该极坐标系下,圆是以点为圆心,且过点的圆心.
(1)求圆及圆在平而直角坐标系下的直角坐标方程;
(2)求圆上任一点与圆上任一点之间距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)若直线l与圆相切,求的值;
(2)若直线l与曲线(为参数)交于A,B两点,点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线: 的焦点为,过点的直线交抛物线于(位于第一象限)两点.
(1)若直线的斜率为,过点分别作直线的垂线,垂足分别为,求四边形的面积;
(2)若,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com