精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为

1求圆C的普通方程和直线l的直角坐标方程;

2M是直线l上任意一点,过M做圆C切线,切点为AB,求四边形AMBC面积的最小值.

【答案】(1)圆的普通方程为.直线直角坐标方程 (2)

【解析】

1)结合,消去参数,得到圆C的普通方程;结合

,代入,得到直线l的直角坐标方程。(2)计算,圆心C到该直线的距离,计算四边形AMBC的面积,计算最小值,即可。

(1)由

即圆的普通方程为.

,由得直线直角坐标方程

(2)圆心到直线:的距离为

是直线上任意一点,则

四边形面积……9分

四边形面积的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某次文艺汇演为,要将ABCDEF这六个不同节目编排成节目单,如下表:

序号

1

2

3

4

5

6

节目

如果AB两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有

A. 192种B. 144种C. 96种D. 72种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为是参数),圆的极坐标方程为.

(Ⅰ)求直线的普通方程与圆的直角坐标方程;

(Ⅱ)设曲线与直线的交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(1)若,求曲线在点处的切线方程;

(2)若函数有且只有一个零点,求实数的取值范围;

(3)若函数恒成立,求实数的取值范围.(是自然对数的底数,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提倡节能减排,同时减轻居民负担,广州市积极推进一户一表工程非一户一表用户电费采用合表电价收费标准:一户一表用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:

第一档

第二档

第三档

每户每月用电量单位:度

电价单位:元

例如:某用户11月用电410度,采用合表电价收费标准,应交电费元,若采用阶梯电价收费标准,应交电费元.

为调查阶梯电价是否能到减轻居民负担的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量单位:度为:88268370140440420520320230380

1)在答题卡中完成频率分布表,并绘制频率分布直方图;

根据已有信息,试估计全市住户11月的平均用电量同一组数据用该区间的中点值作代表

设某用户11月用电量为x,按照合表电价收费标准应交元,按照阶梯电价收费标准应交元,请用x表示,并求当时,x的最大值,同时根据频率分布直方图估计阶梯电价能否给不低于的用户带来实惠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的一个顶点为,且过抛物线的焦点F

(1)求椭圆C的方程及离心率;

(2)设点Q是椭圆C上一动点,试问直线上是否存在点P,使得四边形PFQB是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正整数123n排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用表示,则100可表示为______

1

2

3

4

5

6

7

8

1

1

2

3

2

9

8

7

6

5

4

3

10/p>

11

12

13

14

15

16

17

查看答案和解析>>

同步练习册答案