精英家教网 > 高中数学 > 题目详情

如图,在底面为直角梯形的四棱锥平面

⑴求证:
(2)设点在棱上,,若∥平面,求的值.

(1)证明略;(2)

解析试题分析:(1)∵∠DAB=90°,AD=1,AB=,∴BD=2,∠ABD=30°,
∵BC∥AD∴∠DBC=60°,BC=4,由余弦定理得DC=2
BC2=DB2+DC2,∴BD⊥DC,
∵PD⊥面ABCD,∴BD⊥PD,PD∩CD=D,∴BD⊥面PDC,
∵PC在面PDC内,∴BD⊥PC。
(2)在底面ABCD内过D作直线DF∥AB,交BC于F,
分别以DA、DF、DP为x、y、z轴建立如图空间坐标系,
A(1,0,0),B(1,,0),P(0,0,a)C、(-3,,0),
=(-3,,-a),=(-3λ,λ,-aλ),
=(0,0,a)+(-3λ,λ,-aλ)=(-3λ,λ,a-aλ),
=(0,,0),=(1,0,-a),
=(x,y,z)为面PAB的法向量,由·=0,
得y=0,由·=0,得x-az=0,取x=a,z=1,
=(a,0,1),
由DE∥面PAB得:
,∴·=0,-3aλ+a-aλ=0,∴λ=
考点:本题主要考查立体几何中的平行关系、垂直关系。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,(2)利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。对计算能力要求较高。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.

(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是矩形边上的点,边的中点,,现将沿边折至位置,且平面平面.
⑴ 求证:平面平面
⑵ 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在三棱柱中,侧棱底面,的中点, ,.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知简单几何体的三视图如图所示

求该几何体的体积和表面积。
附:    分别为上、下底面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是菱形.的中点.

(1)求证:∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,侧面是边长为2的正方形,的中点,在棱上.

(1)当时,求三棱锥的体积.
(2)当点使得最小时,判断直线是否垂直,并证明结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某多面体的直观图及三视图如图所示: E,F分别为PC,BD的中点

(1)求证:
(2)求证:
(3)求此多面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

查看答案和解析>>

同步练习册答案