精英家教网 > 高中数学 > 题目详情

(1)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小;

(2)已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时比较cn与an+bn的大小.

(1)(x2+y2)(x-y)>(x2-y2)(x+y)(2) an+bn<cn


解析:

(1)方法一  (x2+y2)(x-y)-(x2-y2)(x+y)

=(x-y)[x2+y2-(x+y)2]=-2xy(x-y),

∵x<y<0,∴xy>0,x-y<0,

∴-2xy(x-y)>0,

∴(x2+y2)(x-y)>(x2-y2)(x+y).

方法二  ∵x<y<0,∴x-y<0,x2>y2,x+y<0.

∴(x2+y2)(x-y)<0,(x2-y2)(x+y)<0,

∴0<=<1,

∴(x2+y2)(x-y)>(x2-y2)(x+y).

(2)∵a,b,c∈{正实数},∴an,bn,cn>0,

=+.

∵a2+b2=c2,则+=1,

∴0<<1,0<<1.

∵n∈N,n>2,

,,

=+=1,

∴an+bn<cn.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)•(x+y)的大小;
(2)已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时,比较cn与an+bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足定义域在(0,+∞)上的函数,对于任意的x,y∈(0,+∞),都有f(xy)=f(x)+f(y),当且仅当x>1时,f(x)<0成立,
(1)设x,y∈(0,+∞),求证f(
yx
)=f(y)-f(x)

(2)设x1,x2∈(0,+∞),若f(x1)<f(x2),试比较x1与x2的大小;
(3)解关于x的不等式f(x2-2x+1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)满足定义域在(0,+∞)上的函数,对于任意的x,y∈(0,+∞),都有f(xy)=f(x)+f(y),当且仅当x>1时,f(x)<0成立,
(1)设x,y∈(0,+∞),求证数学公式
(2)设x1,x2∈(0,+∞),若f(x1)<f(x2),试比较x1与x2的大小;
(3)解关于x的不等式f(x2-2x+1)>0.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学一轮精品复习学案:6.1 不等式(解析版) 题型:解答题

(1)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)•(x+y)的大小;
(2)已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时,比较cn与an+bn的大小.

查看答案和解析>>

同步练习册答案