(1)设x<y<0,试比较(x2+y2)(x-y)与(x2-y2)(x+y)的大小;
(2)已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时比较cn与an+bn的大小.
(1)(x2+y2)(x-y)>(x2-y2)(x+y)(2) an+bn<cn
(1)方法一 (x2+y2)(x-y)-(x2-y2)(x+y)
=(x-y)[x2+y2-(x+y)2]=-2xy(x-y),
∵x<y<0,∴xy>0,x-y<0,
∴-2xy(x-y)>0,
∴(x2+y2)(x-y)>(x2-y2)(x+y).
方法二 ∵x<y<0,∴x-y<0,x2>y2,x+y<0.
∴(x2+y2)(x-y)<0,(x2-y2)(x+y)<0,
∴0<=<1,
∴(x2+y2)(x-y)>(x2-y2)(x+y).
(2)∵a,b,c∈{正实数},∴an,bn,cn>0,
而=+.
∵a2+b2=c2,则+=1,
∴0<<1,0<<1.
∵n∈N,n>2,
∴<,<,
∴=+<=1,
∴an+bn<cn.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
y | x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011年高三数学一轮精品复习学案:6.1 不等式(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com