精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是(  )
分析:由y=f(x+1)是偶函数可得函数y=f(x)得图象,从而可得函数y=f(x)得图象关于x=1对称,即f(2+x)=f(-x),结合x1<0,x2>0,且x1+x2<-2可得2<2+x2<-x1,由函数在[1,+∞)上为增函数可求
解答:解:由y=f(x+1)是偶函数且把y=f(x+1)的图象向右平移1个单位可得函数y=f(x)得图象
所以函数y=f(x)得图象关于x=1对称,即f(2+x)=f(-x)
因为x1<0,x2>0,且x1+x2<-2
所以2<2+x2<-x1
因为函数在[1,+∞)上为增函数
所以f(2+x2)<f(-x1
即f(-x2)<f(-x1
故选A.
点评:本题主要考查了函数的奇偶性、函数图象的平移、函数的对称性、函数的单调性等函数知识得综合应用,解题得关键是要能灵活应用函数的知识进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案