精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;        ②f(0)f(1)<0;
③f(0)f(3)>0;        ④f(0)f(3)<0.
其中正确结论的序号是________.
②③
∵f′(x)=3x2-12x+9=3(x-1)(x-3),
由f′(x)<0,得1<x<3,
由f′(x)>0,
得x<1或x>3,
∴f(x)在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.
又a<b<c,f(a)=f(b)=f(c)=0,
∴y极大值=f(1)=4-abc>0,
y极小值=f(3)=-abc<0.
∴0<abc<4.
∴a,b,c均大于零,或者a<0,b<0,c>0.又x=1,x=3为函数f(x)的极值点,后一种情况不可能成立,如图.

∴f(0)<0.∴f(0)f(1)<0,f(0)f(3)>0.∴正确结论的序号是②③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若的单调减区间是,求实数a的值;
(2)若函数在区间上都为单调函数且它们的单调性相同,求实数a的取值范围;
(3)a、b是函数的两个极值点,a<b,。求证:对任意的,不等式成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定(  )
A.有最小值B.有最大值C.是减函数D.是增函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数.若实数a, b满足, 则 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,长度为3的线段AB的端点A、B分别在轴上滑动,点M在线段AB上,且,
(1)若点M的轨迹为曲线C,求其方程;
(2)过点的直线与曲线C交于不同两点E、F,N是曲线上不同于E、F的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若函数时取得极值,求实数的值;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.

查看答案和解析>>

同步练习册答案