精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个焦点与抛物线的焦点相同,A为椭圆C的右顶点,以A为圆心的圆与直线相交于P, 两点,且

(Ⅰ)求椭圆C的标准方程和圆A的方程;

(Ⅱ)不过原点的直线与椭圆C交于M、N两点,已知OM,直线,ON的斜率成等比数列,记以OM、ON为直径的圆的面积分别为S1S2,试探究的值是否为定值,若是,求出此值;若不是,说明理由.

【答案】() , () .

【解析】试题分析:(Ⅰ)求出抛物线的焦点,可得,由可得结合性质 ,求出 的值,从而即可得结果;(Ⅱ)设直线的方程为可得

,根据韦达定理、弦长公式可得,从而可得结论.

试题解析:(Ⅰ)如图,设TPQ的中点,连接AT,则AT⊥PQ

由已知得,所以

椭圆C的方程为

()设直线的方程为

由题设知,

为定值,该定值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是函数的图像上任意不同的两点,依据图像可知,线段总是位于两点之间函数图像的上方,因此有结论成立,运用类比的思想方法可知,若点是函数的图像上任意不同的两点,则类似地有_________成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB 为棱PC上一点.

()若点是PC的中点,证明:B∥平面PAD;

() 试确定的值使得二面角-BD-P为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,//为正三角形. 若,且与底面所成角的正切值为.

(1)证明:平面平面

(2)是线段上一点,记,是否存在实数,使二面角的余弦值为若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量.(注:总收益=总成本+利润)

(1)将利润表示为月产量的函数;

(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图设计一幅矩形宣传画,要求画面面积为4840,画面上下边要留8cm空白,左右要留5cm空白,怎样确定画面高与宽的尺寸,才能使宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:

(1)求关于的线性回归方程;

(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.

附:回归直线的斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国务院批准从2009年起,将每年8月8日设置为“全民健身日”,为响应国家号召,各地利用已有土地资源建设健身场所.如图,有一个长方形地块,边.地块的一角是草坪(图中阴影部分),其边缘线是以直线为对称轴,以为顶点的抛物线的一部分.现要铺设一条过边缘线上一点的直线型隔离带分别在边上(隔离带不能穿越草坪,且占地面积忽略不计),将隔离出的△作为健身场所.则△的面积为的最大值为____________(单位:).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(Ⅰ)若有极小值且极小值为0 ,求的值;

(Ⅱ)当时,, 求的取值范围.

查看答案和解析>>

同步练习册答案