精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
分别是椭圆的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.


解法二:易知,所以,设,则

(以下同解法一)
(Ⅱ)显然直线不满足题设条件,可设直线


,即 ∴
故由①、②得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其
中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角
形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,
在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点
到焦点的最近距离为1(单位:百米).
(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;
(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆上两定点,直线与椭圆相交于A,B两点(异于P,Q两点)

(1)求证:为定值;
(2)当时,求A、P、B、Q四点围成的四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分12分)
已知椭圆(),其左、右焦点分别为,且成等比数列.
(Ⅰ)若椭圆的上顶点、右顶点分别为,求证:;
(Ⅱ)若为椭圆上的任意一点,是否存在过点的直线,使轴的交点满足?若存在,求直线的斜率;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分14分)
已知圆的圆心为,半径为,圆与椭圆: 有一个公共点(3,1),分别是椭圆的左、右焦点.
(1)求圆的标准方程;
(2)若点P的坐标为(4,4),试探究斜率为k的直线与圆能否相切,若能,求出椭圆和直线的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2分别是椭圆的左、右焦点,点P在椭圆上,线段PF2与轴的交点为
M,且,则点M到坐标原点O的距离是  
A.B.C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点为F1,F2,P为椭圆上一点,若,则(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图, 椭圆C:+=1的右顶点是A,上下两个顶点分别为B、D,四边形DAMB是矩形(O为坐标原点),点E、P分别是线段OA、AM的中点。

(1)求证:直线DE与直线BP的交点在椭圆C上.
(2)过点B的直线l1、l2与椭圆C分别交于R、S(不同于B点),且它们的斜率k1、k2满足k1*k2=-,求证:直线RS过定点,并求出此定点的坐标。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,过右焦点
斜率为的直线与两点,若,则 (  )
A. 1B. C.D.2

查看答案和解析>>

同步练习册答案