精英家教网 > 高中数学 > 题目详情
α、β是两个不重合的平面,在下列条件下,可判定αβ的是(  )
A.α、β都平行于直线l、m
B.α内有三个不共线的点到β的距离相等
C.l、m是α内的两条直线且lβ,mβ
D.l、m是两条异面直线且lα,mα,lβ,mβ
对于A,当α∩β=a,lma时,不能推出αβ;
对于B,当α∩β=a,且在α内同侧有两点,另一侧一个点,三点到β的距离相等时,不能推出αβ;
对于C,当l与m平行时,不能推出αβ;
对于D,∵l,m是两条异面直线,且lα,mα,lβ,mβ,∴α内存在两条相交直线与平面β平行,根据面面平行的判定,可得αβ,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD为边长为4的正方形,PA⊥平面ABCD,E为PB中点,PB=4
2

(Ⅰ)求证:PD面ACE;
(Ⅱ)求三棱锥D-AEC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.
(Ⅰ)求证:DE平面PFB;
(Ⅱ)已知二面角P-BF-C的余弦值为
6
6
,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中AB=1,AA1=AD=2.点E为AB中点.
(1)求三棱锥A1-ADE的体积;
(2)求证:A1D⊥平面ABC1D1
(3)求证:BD1平面A1DE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,AB=1
(1)求异面直线A1B与B1C所成的角;
(2)求证:平面A1BD平面B1CD1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求证:直线BD1平面PAC;
(2)求证:平面PAC⊥平面BDD1
(3)求证:直线PB1⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体AC1的棱长为1,连接AC1,交平面A1BD于H,则以下命题中,错误的命题是(  )
A.AC1⊥平面A1BD
B.H是△A1BD的垂心
C.AH=
3
3
D.直线AH和BB1所成角为45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有(  )个直角三角形.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,四边形ABCD是正方形,FA⊥平面ABCD,EFBC,FA=2,AD=3,∠ADE=45°,点G是FA的中点.
(1)求证:EG⊥平面CDE;
(2)在棱BC是否存在点M,使GM平面CDE,若存在,找出点M;若不存在,说明理由.

查看答案和解析>>

同步练习册答案