精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为

1)求直线l的普通方程与曲线C的直角坐标方程;

2)设点,直线l与曲线C交于不同的两点AB,求的值.

【答案】12

【解析】

(1)利用极坐标与直角坐标的互化公式即可把曲线的极坐标方程化为直角坐标方程,利用消去参数即可得到直线的直角坐标方程;

(2) 由于在直线上,写出直线的标准参数方程参数方程,代入曲线的方程利用参数的几何意义即可得出求解即可.

1)直线的普通方程为,即

根据极坐标与直角坐标之间的相互转化,

,则

故直线l的普通方程为

曲线C的直角坐标方程

2)点在直线l上,且直线的倾斜角为

可设直线的参数方程为:t为参数),

代入到曲线C的方程得

由参数的几何意义知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面分别为上的点,且.

1)求证:

2)若,直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)设点,若直线与曲线相交于两点,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.

1)求的值;

2)动点在抛物线的准线上,动点上,若点处的切线轴于点,设.求证点在定直线上,并求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线的参数方程为,(为参数),曲线的极坐标方程为,且交单的横坐标为.

1)求曲线的普通方程.

2)设为曲线轴的两个交点,为曲线上不同于的任意一点,若直线分别与交于两点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:

1)将上列联表补充完整,并请说明在犯错误的概率不超过010的前提下,认为支付方式与年龄是否有关?

2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.

(参考公式:(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角的对边分别为.

(1)求角的大小;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为

(1)求椭圆的标准方程;

(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

同步练习册答案