精英家教网 > 高中数学 > 题目详情

如图,椭圆的离心率为轴被曲线 截得的线段长等于的长半轴长.

(Ⅰ)求的方程;

(Ⅱ)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

(i)证明:

(ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由.

 

 

 

【答案】

(I)由题意知,从而,又,解得

的方程分别为

(II)(i)由题意知,直线的斜率存在,设为,则直线的方程为.

,则是上述方程的两个实根,于是

又点的坐标为,所以

,即

(ii)设直线的斜率为,则直线的方程为,由解得,则点的坐标为

又直线的斜率为 ,同理可得点B的坐标为.

于是

解得,则点的坐标为

又直线的斜率为,同理可得点的坐标

于是

因此

由题意知,解得 或

又由点的坐标可知,,所以 

故满足条件的直线存在,且有两条,其方程分别为

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年山东省高三下学期开学考试理科数学试卷(解析版) 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

1)求的方程;

2)求证:

3)记的面积分别为,若,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省桐乡市高三模拟考试(2月)理科数学试卷(解析版) 题型:解答题

如图,椭圆的离心率为是其左右顶点,是椭圆上位于轴两侧的点(点轴上方),且四边形面积的最大值为4.

(1)求椭圆方程;

(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省莱芜市高三4月模拟考试理科数学试卷(解析版) 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的短轴长。轴的交点为,过坐标原点的直线相交于点,直线分别与相交于点

(1)求的方程;

(2)求证:

(3)记的面积分别为,若,求的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2014届重庆市高二上学期期中考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.

 

(Ⅰ)求椭圆M的标准方程;

(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(山东卷解析版) 题型:解答题

如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.

(Ⅰ)求椭圆M的标准方程;

(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.

 

查看答案和解析>>

同步练习册答案