精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,长轴长为4分别为椭圆的左,右焦点,点是椭圆上的任意一点,面积的最大为,且取得最大值时为钝角.

1)求椭圆的标准方程;

2)已知圆,点为圆上任意一点,过点的切线分别交椭圆两点,且,求的值.

【答案】1 2

【解析】

(1)由条件,当点在短轴的端点时,的面积最大得,又当的面积取得最大值时为钝角得 ,可解出椭圆方程.

(2)分切线的斜率存在和不存在两种情况计算,由,即 方程联立代入结合直线与圆相切计算可得答案.

(1)短轴的端点分别为.

由椭圆的长轴为4,则.

当点在短轴的端点时,的面积最大,则 ……

的面积取得最大值时为钝角.

,所以,即……………

………

解得:

所以椭圆方程为:.

(2)设圆上过点的切线为直线 .

当直线的斜率不存在时, ,则

,即,解得:.

当直线的斜率存在时,设

由直线与圆相切得:即:.

得:

,即

所以,即

所以

,则.

.

所以.

综上所述的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中底面为菱形平面分别是上的中点直线与平面所成角的正弦值为上移动.

(Ⅰ)证明:无论点上如何移动都有平面平面

(Ⅱ)求点恰为的中点时二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行双12有奖促销活动,顾客购买168元的商品后即可抽奖,抽奖方法是:从装有2个红球1个白球的甲箱与装有2个红球1个白球的乙箱中,各随机摸出1个球,这些球除颜色,标号外都一样.若摸出的2个球颜色相同则中奖,否则不中奖.

1)用球的标号列出所有可能的摸出结果;

2)小明根据经验认为:摸到同色球一般来说更为难得,所以猜测中奖的概率小于不中奖的概率,你认为小明的猜想正确吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的方程为,以为极点,轴的正半轴为极轴建立极坐标系,曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点.

1)求曲线的参数方程,的极坐标方程;

2)若是曲线上的两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,其中为实数,为正整数.

1)对任意实数,求证:不成等比数列;

2)试判断数列是否为等比数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩阵B

1 AB

2 若曲线C1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)当时,解不等式

2)已知是以2为周期的偶函数,且当时,有.,且,求函数的反函数;

3)若在上存在个不同的点,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,201911日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:

级数

一级

二级

三级

四级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过12000元至25000元的部分

超过25000元至35000元的部分

税率

3

10

20

25

1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?

2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.

查看答案和解析>>

同步练习册答案