精英家教网 > 高中数学 > 题目详情

【题目】在正三棱柱中,D是AC的中点,AB1⊥BC1,则平面DBC1与平面CBC1所成的角为

A.30° B.45°

C.60° D.90°

【答案】B

【解析】平面DBC1与平面CBC1所成的角.以A为坐标原点,的方向分别为y轴和z轴的正方向建立空间直角坐标系.设底面边长为2a,侧棱长为2b,则A0, 0, 0,C0, 2a, 0,D0,a, 0 ,Ba,a, 0,C10, 2a, 2b,则.由,得·=0,即2b2=a2.x,y,z为平面DBC1法向量,则·=0,·0令z=10,-,1.同理可求得平面CBC1的一个法向量为1,,0cos θ=,得θ=45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex﹣kx2+2,k∈R. (Ⅰ) 当k=0时,求f(x)的极值;
(Ⅱ) 若对于任意的x∈[0,+∞),f(x)≥1恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲线过原点,且在x=±1处的切线斜率均为﹣1,给出以下结论: ①f(x)的解析式为f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的极值点有且仅有一个;
③f(x)的最大值与最小值之和等于0.
其中正确的结论有(
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.

(1)证明:平面ADB⊥平面BDC;

(2)若BD=1,求三棱锥D-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题正确的个数是( )

若方程有一个正实根,一个负实根,则;

函数是偶函数,但不是奇函数;

设函数的定义域为,则函数与函数图像关于轴对称;

一条曲线和直线的公共点个数是,则的值不可能是1。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.

(1)求AD边所在直线的方程;

(2)求矩形ABCD外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体P﹣ABC中,点M是棱PC的中点,点N是线段AB上一动点,且 ,设异面直线 NM 与 AC 所成角为α,当 时,则cosα的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的高铁技术发展迅速,铁道部门计划在两城市之间开通高速列车,假设列车在试运行期间,每天在两个时间段内各发一趟由城开往城的列车(两车发车情况互不影响),城发车时间及概率如下表所示:

发车

时间

概率

若甲、乙两位旅客打算从城到城,他们到达火车站的时间分别是周六的和周日的(只考虑候车时间,不考虑其他因素).

(1)设乙候车所需时间为随机变量(单位:分钟),求的分布列和数学期望

(2)求甲、乙两人候车时间相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD如图所示,其中O为圆心,C,D在半圆上,设,木梁的体积为V单位:m3,表面积为S单位:m2

1求V关于θ的函数表达式;

2的值,使体积V最大;

3问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

查看答案和解析>>

同步练习册答案