(本小题满分14分)
动圆G与圆外切,同时与圆内切,设动圆圆心G的轨迹为。
(1)求曲线的方程;
(2)直线与曲线相交于不同的两点,以为直径作圆,若圆C与轴相交于两点,求面积的最大值;
(3)设,过点的直线(不垂直轴)与曲线相交于两点,与轴交于点,若试探究的值是否为定值,若是,求出该定值,若不是,请说明理由。
(1);(2);(3) 。
【解析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆方程的位置关系的综合运用。
(1) 利用圆圆位置关系,得到圆心距与半径的关系式,从而得到点的轨迹方程。
(2) 设出直线方程与椭圆方程联立,结合韦达定理得到结论。
(3) 设直线与椭圆联立方程组,利用过圆心得到垂直关系,结合韦达定理得到结论。
解:(1)设圆G的半径为r,依题意得:,
所以,所以G点轨迹是以为焦点的椭圆,
所以曲线的方程是………… 4分
(2)依题意,圆心为.
由 得. ∴ 圆的半径为.
∵ 圆与轴相交于不同的两点,且圆心到轴的距离,
∴ ,即.
∴ 弦长 ∴的面积
当且仅当即时,等号成立,
所以面积的最大值是 ………………… 8分
(3) 依题意,直线的斜率存在,设,,,则
由消得:,
则 ① ②
由得,所以
又不垂直轴,所以,故,同理;
所以=,
将①②代入上式得………………… 14分
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com