精英家教网 > 高中数学 > 题目详情

【题目】已知向量 满足| |=1,| |=2,则| + |+| |的最小值是 , 最大值是

【答案】4;
【解析】解:记∠AOB=α,则0≤α≤π,如图,
由余弦定理可得:
| + |=
| |=
令x= ,y=
则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,
令z=x+y,则y=﹣x+z,
则直线y=﹣x+z过M、N时z最小为zmin=1+3=3+1=4,
当直线y=﹣x+z与圆弧MN相切时z最大,
由平面几何知识易知zmax即为原点到切线的距离的 倍,
也就是圆弧MN所在圆的半径的 倍,
所以zmax= × =
综上所述,| + |+| |的最小值是4,最大值是
所以答案是:4、


【考点精析】通过灵活运用函数的最值及其几何意义和余弦定理的定义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;余弦定理:;;即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱台ABCD﹣A1B1C1D1中,平面BCC1B1⊥平面ABCD,四边形ABCD为平行四边形,四边形BCC1B1为等腰梯形,BC=4,B1C1=C1C=2,AB=5,AC⊥BC.

(1)求证:BC1⊥平面ACC1
(2)求直线BC1与平面ADD1A1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}和等比数列{bn}满足a1=b1=1,a2+a4=10,b2b4=a5
(Ⅰ)求{an}的通项公式;
(Ⅱ)求和:b1+b3+b5+…+b2n1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m( )
A.与a有关,且与b有关
B.与a有关,但与b无关
C.与a无关,且与b无关
D.与a无关,但与b有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,B为△ACD所在平面外一点,MNG分别为△ABC,△ABD,△BCD的重心.

(1)求证:平面MNG∥平面ACD

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为零,,且成等比数列.

(1)求的通项公式;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD中,下面结论错误的是( )

A. BD∥平面C B. AC1⊥BD

C. AC1⊥平面C D. 向量的夹角为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直棱柱ABC-A1B1C1的底面ABC中,CA=CB=1,ACB=90°,棱AA1=2,如图,以C为原点,分别以CA,CB,CC1x,y,z轴建立空间直角坐标系.

(1)求平面A1B1C的法向量;

(2)求直线AC与平面A1B1C夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(1﹣x2)ex
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当x≥0时,f(x)≤ax+1,求a的取值范围.

查看答案和解析>>

同步练习册答案