精英家教网 > 高中数学 > 题目详情
18.命题“?x<0,x2-x+1>0”的否定是?x<0,x2-x+1≤0.

分析 直接利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以命题“?x<0,x2-x+1>0”的否定是:“?x<0,x2-x+1≤0”.
故答案为:?x<0,x2-x+1≤0.

点评 本题考查全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.△ABC中,acosA=bcosB(A≠B),则角C=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,(x≤1)}\\{lo{g}_{2}x,(x>1)}\end{array}\right.$,则f(1)+f(4)=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C:x2+y2-2x-7=0.
(1)过点P(3,4)且被圆C截得的弦长为4的弦所在的直线方程
(2)是否存在斜率为1的直线l,使l被圆C截得的弦AB的中点D到原点O的距离恰好等于圆C的半径,若存在求出直线l的方程,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=log2|sinx|.
(1)求函数定义域;
(2)求函数值域;
(3)写出f(x)单调增区间(不用说理由).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图象是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.
(1)求函数f(x)在(2,+∞)上的解析式;
(2)在直角坐标系中直接画出函数f(x)的图象;
(3)写出函数f(x)的值域及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lg(2+x)+lg(2-x),
(Ⅰ)求函数f(x)的定义域及值域;
(Ⅱ)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列四则函数:
①sin(x-$\frac{3π}{2}$),y=cosx;②y=sinx,y=tanx•cosx;
③y=1-ln(x2),y=1-2lnx;④y=2+$\sqrt{{x}^{2}}$,y=2+$\root{3}{{x}^{3}}$.
其中,是相等函数的一共有(  )
A.1组B.2组C.3组D.4组

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=2sinx$co{s}^{2}\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取最小-1.
(1)求φ的值;若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的单减区间;
(2)把f(x)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位得的图象g(x),求g(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案