精英家教网 > 高中数学 > 题目详情
7.已知圆O的半径为1,A,B是圆上的两点,且∠AOB=$\frac{π}{3}$,MN是圆O的任意一条直径,若点C满足$\frac{1}{2}$$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),则$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为-$\frac{1}{4}$.

分析 由题意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{CO}$+$\overrightarrow{OM}$)•($\overrightarrow{CO}$+$\overrightarrow{ON}$)=${\overrightarrow{CO}}^{2}$-1,由点C在直线AB上,则当C在AB中点时候,OC⊥AB,OC最小为等边三角形AOB的高,从而求得$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值.

解答 解:由题意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{CO}$+$\overrightarrow{OM}$)•($\overrightarrow{CO}$+$\overrightarrow{ON}$)=${\overrightarrow{CO}}^{2}$+$\overrightarrow{CO}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+$\overrightarrow{OM}•\overrightarrow{ON}$,
∵MN是圆O的任意一条直径,∴$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}•\overrightarrow{ON}$=-1,
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=${\overrightarrow{CO}}^{2}$+0-1=${\overrightarrow{CO}}^{2}$-1.
要求$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值问题就是求${\overrightarrow{CO}}^{2}$的最小值,
由于$\frac{1}{2}$$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),故点C在直线AB上,则当C在AB中点时候,
OC⊥AB,OC最小为等边三角形AOB的高线,为$\frac{\sqrt{3}}{2}$,此时${\overrightarrow{CO}}^{2}$=$\frac{3}{4}$,
故$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值为${\overrightarrow{CO}}^{2}$-1=-$\frac{1}{4}$,
故答案为:-$\frac{1}{4}$.

点评 本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数$f(x)=lnx+\frac{1}{2}{x^2}-({b-1})x$
(Ⅰ)若b=2,求函数f(x)在点$P({1,-\frac{1}{2}})$处的切线方程;
(Ⅱ)若函数f(x)存在单调递减区间,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知线段PQ的端点Q的坐标为(-2,3),端点P在圆C:(x-8)2+(y-1)2=4上运动.
(Ⅰ)求线段PQ中点M的轨迹E的方程;
(Ⅱ)若一光线从点Q射出,经x轴反射后,与轨迹E相切,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,M,N分别为其左右顶点.过F2的直线l与椭圆相交于A,B两点.当直线l与x轴垂直时,四边形AMBN的面积等于2,且满足|$\overrightarrow{M{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{AB}$|+|$\overrightarrow{{F}_{2}N}$|.
(1)求此椭圆的方程;
(2)当直线l绕着焦点F2旋转不与x轴重合时,求$\overrightarrow{AM}$•$\overrightarrow{AN}$+$\overrightarrow{BM}$•$\overrightarrow{BN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα-βsinβ>0,则下列关系式:①α>β;②α<β;③α+β>0;④α2>β2;⑤α2≤β2
其中正确的序号是:④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)(x∈N)表示x除以2的余数,函数g(x)(x∈N)表示x除以3的余数,则对任意的x∈N,给出以下式子:①f(x)≠g(x);②f(2x)=0;③g(2x)=2g(x);④f(x)+f(x+3)=1.其中正确的式子编号是②④.(写出所有符合要求的式子编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=$[{\frac{1}{2},2}]$,b=0.56,c=log0.56,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={1,3},集合B={3,4},则A∪B等于(  )
A.{1}B.{3}C.{1,3,3,4}D.{1,3,4}

查看答案和解析>>

同步练习册答案