精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax3+3bx(a,b为实数,a<0,b>0),当x∈[0,1]时,有f(x)∈[0,1],则b的最大值是(  )
A、
1
2
B、
2
4
C、
3
2
D、
3
+1
4
考点:利用导数求闭区间上函数的最值
专题:计算题
分析:求导数,利用函数的单调性,结合x∈[0,1]时,有f(x)∈[0,1],即可b的最大值.
解答: 解:∵f(x)=ax3+3bx,∴f′(x)=3ax2+3b
令f′(x)=0,可得x=±
-
b
a

-
b
a
≥1,则f(x)max=f(1)=1,∴b∈(0,
1
2
];
②0<
-
b
a
<1,f(x)max=f(
-
b
a
)=1,f(1)≥0,∴b∈(
1
2
3
2
].
∴b的最大值是
3
2

故选:C.
点评:本题考查导数知识的运用,考查函数的值域,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=log32,b=log52,c=log23,则(  )
A、a>b>c
B、c>a>b
C、b>c>a
D、b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则(
1+i
1-i
2012=(  )
A、iB、1C、-iD、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(不等式选讲选做题)已知关于x的不等式|x-1|+|x|≤k无解,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a|+|x-2|,
(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;
(Ⅱ)当a=1时,函数f(x)的最小值为m,若a,b,c是正实数,且满足a+b+c=m,求证:a2+b2+c2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题;(1)命题“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x<0”(2)已知x∈R,则“x>1”是“x>2”的必要不充分条件(3)若a,b∈[0,2],则不等式a2+b2
1
4
成立的概率是
π
16
(4)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行的充分条件”的其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=b+(1-2a)x+x2-x3
(I)讨论f(x)在其定义域上的单调性;
(II)设曲线y=f(x)在点(1,f(1))处的切线方程为y=4x-1,求函数f(x)在定义域上的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线上y2=2x一点M到它的焦点F的距离为
3
2
,O为坐标原点,则△MFO的面积为(  )
A、
2
2
B、
2
4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

某小微企业日均用工人数a(人)与日营业利润f(x)(元)、日人均用工成本x(元)之间的函数关系为,f(x)=-
1
3
x3+5x2+30ax-500(x≥0).
(1)若日均用工人数a=20,求日营业利润f(x)的最大值;
(2)由于政府的减税、降费等一系列惠及小微企业政策的扶持,该企业的日人均用工成本x的值在区间[10,20]内,求该企业在确保日营业利润f(x)不低于24000元的情况下,该企业平均每天至少可供多少人就业.

查看答案和解析>>

同步练习册答案