【题目】已知 的图象上相邻两对称轴的距离为.
(1)若,求的递增区间;
(2)若时,若的最大值与最小值之和为5,求的值.
科目:高中数学 来源: 题型:
【题目】已知集合A={x|(x﹣3)(x﹣3a﹣5)<0},函数y=lg(﹣x2+5x+14)的定义域为集合B.
(1)若a=4,求集合A∩B;
(2)若“x∈A”是“x∈B”的充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列4个命题: ①“若a、G、b成等比数列,则G2=ab”的逆命题;
②“如果x2+x﹣6≥0,则x>2”的否命题;
③在△ABC中,“若A>B”则“sinA>sinB”的逆否命题;
④当0≤α≤π时,若8x2﹣(8sinα)x+cos2α≥0对x∈R恒成立,则α的取值范围是0≤α≤ .
其中真命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:
分公司名称 | 雅雨 | 雅雨 | 雅女 | 雅竹 | 雅茶 |
月销售额x(万元) | 3 | 5 | 6 | 7 | 9 |
月利润y(万元) | 2 | 3 | 3 | 4 | 5 |
在统计中发现月销售额x和月利润额y具有线性相关关系.
(Ⅰ)根据如下的参考公式与参考数据,求月利润y与月销售额x之间的线性回归方程;
(Ⅱ)若该总公司还有一个分公司“雅果”月销售额为10万元,试求估计它的月利润额是多少?(参考公式: = , = ﹣ ,其中: =112, =200).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四边形OABC的四个顶点坐标分别为O(0,0)、A(6,2)、B(4,6)、C(2,6),直线y=kx(<k<3)分四边形OABC为两部分,S表示靠近x轴一侧的那一部分的面积.
(1)求S=f(k)的函数表达式;
(2)当k为何值时,直线y=kx将四边形OABC分为面积相等的两部分?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
是否优良 | 优良(人数) | 非优良(人数) | 合计 |
甲 | |||
乙 | |||
合计 |
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选2人来作书面发言,求2人都来自甲班的概率. 下面的临界值表供参考:
P(x2k) | 0.10 | 0.05 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
(以下临界值及公式仅供参考 ,n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(a﹣c)(sinA+sinC)=(a﹣b)sinB.
(1)求角C的大小;
(2)若c= ≤a,求2a﹣b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,其左、右焦点为F1、F2 , 点P是坐标平面内一点,且|OP|= , = ,其中O为坐标原点.
(1)求椭圆C的方程;
(2)如图,过点S(0,﹣ )的动直线l交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com