精英家教网 > 高中数学 > 题目详情
1.已知球O的内接圆柱的体积是2π,底面半径为1,则球O的表面积为(  )
A.B.C.10πD.12π

分析 圆柱的底面半径为1,根据球O的内接圆柱的体积是2π,所以高为2,则圆柱的轴截面的对角线即为球的直径,确定球的半径,进而可得球的表面积.

解答 解:由题意得,圆柱底面直径为2,球的半径为R,
由于球O的内接圆柱的体积是2π,所以高为2,
则圆柱的轴截面的对角线即为球的直径,
即2$\sqrt{2}$=2R,∴R=$\sqrt{2}$,
∴球的表面积=4πR2=8π,
故选:B.

点评 本题考查球内接多面体与球的表面积的计算,正确运用公式是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+bx+c的图象在y轴上的截距为1,且满足f(x+1)=f(x)+x+1,
试求:(1)f(x)的解析式;
(2)当f(x)≤7时,对应的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于二次函数y=-4x2+8x-5,
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)画出它的图象,并说明其图象由y=-4x2的图象经过怎样平移得来;
(3)分析函数的单调性.
(4)求函数的最大值或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$A(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$,左焦点为F.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:$x+\sqrt{2}y-1=0$交椭圆于A,B两点,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1,则其渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{1}{3}$xD.y=±3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,2QA=2AB=PD
(Ⅰ)证明:PQ⊥QC
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大时,其高的值为(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)是定义在(0,+∞)上的单调函数,?x∈(0,+∞),f[f(x)-lnx]=e+1,函数h(x)=xf(x)-ex的最小值为(  )
A.-1B.$-\frac{1}{e}$C.0D.e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sinx-cosx的图象(  )
A.关于直线$x=\frac{π}{4}$对称B.关于直线$x=-\frac{π}{4}$对称
C.关于直线$x=\frac{π}{2}$对称D.关于直线$x=-\frac{π}{2}$对称

查看答案和解析>>

同步练习册答案