精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

设函数f(x)=x2x-15,且|xa|<1,

(1)解不等式

(2)求证:|f(x)-f(a)|<2(|a|+1).

【答案】(1)(2)见解析

【解析】试题分析:(1)先根据绝对值定义将不等式转化为两个一元二次不等式分别求解,最后求它们的并集(2)作差f(x)-f(a)因式分解得(xa)(xa-1),根据条件|xa|<1以及绝对值三角不等式放缩可得结论

试题解析(1)

(2)∵|xa|<1,

∴|f(x)-f(a)|=|(x2x-15)-(a2a-15)|

=|(xa)(xa-1)|

=|xa|·|xa-1|<1·|xa-1|

=|xa+2a-1|≤|xa|+|2a-1|<1+|2a-1|≤1+|2a|+1

=2(|a|+1),

即|f(x)-f(a)|<2(|a|+1).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,若曲线在点处的切线斜率为3,且时, 有极值。

1)求函数的解析式;

2)求函数上的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经观测,某公路段在某时段内的车流量y(千辆/小时)与汽车的平均速度v(千/小时)之间有函数关系:
(1)在该时段内,当汽车的平均速度v为多少时车流量y最大?最大车流量为多少?(精确到0.01千辆);
(2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
①△ABC中角A,B,C的对边分别是a,b,c,若a>b,则cosA<cosB,cos2A<cos2B;
②a,b∈R,若a>b,则a3>b3
③若a<b,则
④设等差数列{an}的前n项和为Sn , 若S2016﹣S1=1,则S2017>1.
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:1﹣ ≤ln(x+1)≤x,其中x>﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACBAC3 BC2P是△ABC内的一点.

(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;

(2)若∠BPC,设∠PCBθ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}是单调递增的数列,a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog2an , 数列{bn}的前n项和为Sn , 求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣3x+5,若关于x的方程f(x)=a至少有两个不同实根,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,分别是椭圆的左、右焦点.

(1)若点是第一象限内椭圆上的一点, ,求点的坐标;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案