精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{2x-{x}^{2},x<0}\end{array}\right.$,若f(3-m2)<f(2m),则实数m的取值范围是(  )
A.(-∞,-1)B.(3,+∞)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

分析 作出函数f(x)的图象,确定函数的单调性,利用函数的单调性进行求解即可.

解答 解:作出函数f(x)的图象如图,则函数f(x)为增函数,
若f(3-m2)<f(2m),
则3-m2<2m,
即m2+2m-3>0,
解得m>1或m<-3,
即实数m的取值范围是(-∞,-3)∪(1,+∞),
故选:C.

点评 本题主要考查函数单调性的应用,根据条件结合图象判断函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图所示,?ABCD中,E、F分别是BC、DC的中点,BF与DE交于点G,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{DE}$;
(2)试用向量方法证明:A、G、C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求点A(-2,1)关于直线2x+y-1=0的对称点A′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在椭圆x2+4y2=16中,求通过点M(2,1)且被这点平分的弦所在的直线的方程和弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C经过点($\sqrt{3}$,$\frac{1}{2}$)和点($\sqrt{2}$,-$\frac{\sqrt{2}}{2}$),互相垂直的两条射线OA,OB交椭圆C于A,B两点,其中A在第二象限内(如图所示),若D是椭圆的左顶点且BD∥OA.
(1)求椭圆C的标准方程;
(2)求$\frac{|OA|}{|BD|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=Asin(ωx+φ)(ω>0)在一个周期内的图象如图所示,则ω的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{9}^{x}}{{9}^{x}+3}$.
(1)求f(x)+f(1-x)的值;
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知y=f(x)是(0,+∞)上的可导函数,满足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x),且g(a)=2016,则a等于(  )
A.-500.5B.-501.5C.-502.5D.-503.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一块形状为直角三角形的铁皮,两直角边长分别为60cm,80cm,现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是1200cm2

查看答案和解析>>

同步练习册答案