精英家教网 > 高中数学 > 题目详情
(2011•海淀区二模)已知函数f(x)=(ax2-x)lnx-
12
ax2+x
.(a∈R).
(I)当a=0时,求曲线y=f(x)在(e,f(e))处的切线方程(e=2.718…);
(II)求函数f(x)的单调区间.
分析:(I)将a=0代入,对函数f(x)进行求导得到切线的斜率k=f′(e),切点为(e,f(e)),根据点斜式即可写出切线方程;
(II)由题意知先求导数,f(x)在(1,e]内单调性.下面对a进行分类讨论:①当a≤0时,②当0<a<
1
2
时,③当a=
1
2
时,④当a>
1
2
时,由此可知f(x)的单调增区间和单调递减区间;
解答:解:( I)当a=0时,f(x)=x-xlnx,f'(x)=-lnx,…(2分)
所以f(e)=0,f'(e)=-1,…(4分)
所以曲线y=f(x)在(e,f(e))处的切线方程为y=-x+e.…(5分)
( II)函数f(x)的定义域为(0,+∞)f′(x)=(ax2-x)
1
x
+(2ax-1)lnx-ax+1=(2ax-1)lnx
,…(6分)
①当a≤0时,2ax-1<0,在(0,1)上f'(x)>0,在(1,+∞)上f'(x)<0
所以f(x)在(0,1)上单调递增,在(1,+∞)上递减; …(8分)
②当0<a<
1
2
时,在(0,1)和(
1
2a
,+∞)
上f'(x)>0,在(1,
1
2a
)
上f'(x)<0
所以f(x)在(0,1)和(
1
2a
,+∞)
上单调递增,在(1,
1
2a
)
上递减;…(10分)
③当a=
1
2
时,在(0,+∞)上f'(x)≥0且仅有f'(1)=0,
所以f(x)在(0,+∞)上单调递增;                …(12分)
④当a>
1
2
时,在(0,
1
2a
)
和(1,+∞)上f'(x)>0,在(
1
2a
,1)
上f'(x)<0
所以f(x)在(0,
1
2a
)
和(1,+∞)上单调递增,在(
1
2a
,1)
上递减…(14分)
点评:本题主要考查函数导数的几何意义和函数的单调性与其导函数的正负之间的关系.当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,考查运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•海淀区二模)一个几何体的三视图如图所示,则这个几何体的体积为
π+1
π+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)已知函数f(x)=sinxcosx+sin2x.
(Ⅰ)求f(
π
4
)
的值;
(II)若x∈[0,
π
2
]
,求f(x)的最大值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)如图,已知⊙O的弦AB交半径OC于点D,若AD=3,BD=2,且D为OC的中点,则CD的长为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•海淀区二模)在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分别为AB,BC中点,点Q为平面ABCD内一点,线段D1Q与OP互相平分,则满足
MQ
MN
的实数λ的值有(  )

查看答案和解析>>

同步练习册答案