精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C)上一点到焦点的距离为4.

1)求抛物线C的方程;

2)若,直线l与抛物线C相交于AB两点,求的面积.

【答案】1)抛物线方程为;(2.

【解析】

1)将点带入抛物线方程,结合抛物线定义可得的方程,解方程即可确定的值,进而求得抛物线方程.

2)由和(1)可确定抛物线方程,将抛物线方程与直线方程联立,根据弦长公式求得,再由点到直线距离公式可得原点到直线的距离,即可求得的面积.

1)点在抛物线)上,则

到焦点的距离为4,由抛物线定义可知点到准线的距离也为4,则

所以,解得

所以抛物线方程为

2)因为,由(1)可知抛物线方程为

直线l与抛物线C相交于AB两点,设

,化简可得

由弦长公式可得

由点到直线距离公式可得原点到直线的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为是椭圆上位于第一象限内的任意一点,为坐标原点,关于的对称点为,圆.

1)求椭圆和圆的标准方程;

2)过点与圆相切于点,使得点,点的两侧.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分别在,,(单位:克)中,其频率分布直方图如图所示,

(Ⅰ)已经按分层抽样的方法从质量落在的蜜柚中抽取了个,现从这个蜜柚中随机抽取个。求这个蜜柚质量均小于克的概率:

(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚等待出售,某电商提出了两种收购方案:

方案一:所有蜜柚均以元/千克收购;

方案二:低于克的蜜柚以元/个收购,高于或等于克的以元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为菱形的四棱锥P-ABCD中,平面平面ABCD为等腰直角三角形,,点EF分别为BCPD的中点,直线PC与平面AEF交于点Q.

(1)若平面平面,求证:.

(2)求直线AQ与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形,平面平面是边长为4的等边三角形,的中点.

(1)求证:

(2)若直线与平面所成角的正弦值为,求平面 与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10.

1)求的值;

2)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:48.69.29.68.79.39.08.2,把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】时值金秋十月,正是秋高气爽,阳光明媚的美好时刻。复兴中学一年一度的校运会正在密锣紧鼓地筹备中,同学们也在热切地期盼着,都想为校运会出一份力。小智同学则通过对学校有关部门的走访,随机地统计了过去许多年中的五个年份的校运会“参与”人数及相关数据,并进行分析,希望能为运动会组织者科学地安排提供参考。

附:①过去许多年来学校的学生数基本上稳定在3500人左右;②“参与”人数是指运动员和志愿者,其余同学均为“啦啦队员”,不计入其中;③用数字12345表示小智同学统计的五个年份的年份数,今年的年份数是6

统计表(一)

年份数x

1

2

3

4

5

“参与”人数(y千人)

1.9

2.3

2.0

2.5

2.8

统计表(二)

高一(3)(4)班参加羽毛球比赛的情况:

男生

女生

小计

参加(人数)

26

b

50

不参加(人数)

c

20

小计

44

100

1)请你与小智同学一起根据统计表(一)所给的数据,求出“参与”人数y关于年份数x的线性回归方程,并预估今年的校运会的“参与”人数;

2)学校命名“参与”人数占总人数的百分之八十及以上的年份为“体育活跃年”.如果该校每届校运会的“参与”人数是互不影响的,且假定小智同学对今年校运会的“参与”人数的预估是正确的,并以这6个年份中的“体育活跃年”所占的比例作为任意一年是“体育活跃年”的概率。现从过去许多年中随机抽取9年来研究,记这9年中“体活跃年”的个数为随机变量,试求随机变量的分布列、期望和方差

3)根据统计表(二),请问:你能否有超过60%的把握认为“羽毛球运动”与“性别”有关?

参考公式和数据一:

参考公式二:,其中

参考数据:

0.50

0.40

0.25

0.05

0.025

0.010

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案