8£®´üÖÐÓÐ3¸ö´óС¡¢ÖÊÁ¿ÏàͬµÄСÇò£¬Ã¿¸öСÇòÉÏ·Ö±ðдÓÐÊý×Ö0£¬1£¬2£¬Ëæ»úÃþ³öÒ»¸ö½«ÆäÉϵÄÊý×Ö¼ÇΪa1£¬È»ºó·Å»Ø´üÖУ¬ÔÙ´ÎËæ»úÃþ³öÒ»¸ö£¬½«ÆäÉϵÄÊý×Ö¼ÇΪa2£¬ÒÀ´ÎÏÂÈ¥£¬µÚn´ÎËæ»úÃþ³öÒ»¸ö£¬½«ÆäÉϵÄÊý×Ö¼ÇΪan¼Ç¦În=a1a2¡­an£¬Ôò£¨1£©Ëæ»ú±äÁ¿¦Î2µÄÆÚÍûÊÇ1£»
£¨2£©µ±${¦Î_n}={2^{n-1}}$ʱµÄ¸ÅÂÊÊÇ$\frac{n}{{3}^{n}}$£®

·ÖÎö £¨1£©P£¨¦Î2=1£©=$\frac{1}{3}$¡Á$\frac{1}{3}$£¬P£¨¦Î2=2£©=2¡Á$\frac{1}{3}$¡Á$\frac{1}{3}$£¬P£¨¦Î2=4£©=$\frac{1}{3}$¡Á$\frac{1}{3}$£¬ÀûÓû¥Îª¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¿ÉµÃP£¨¦Î2=0£©£®¿ÉÒÔÇóµÃËæ»ú±äÁ¿¦Î2µÄ·Ö²¼Áм°ÆäÊýѧÆÚÍû£®
¢Úµ±${¦Î_n}={2^{n-1}}$ʱ£¬n´Î³éÈ¡ÖУ¬ÆäÖÐÒ»´ÎΪ1£¬Ê£ÏµÄn-1³éÈ¡µÄ¶¼Îª2£¬¼´¿ÉµÃ³öP£¨${¦Î_n}={2^{n-1}}$£©£®

½â´ð ½â£º£¨1£©P£¨¦Î2=1£©=$\frac{1}{3}$¡Á$\frac{1}{3}$=$\frac{1}{9}$£¬P£¨¦Î2=2£©=2¡Á$\frac{1}{3}$¡Á$\frac{1}{3}$=$\frac{2}{9}$£¬
P£¨¦Î2=4£©=$\frac{1}{3}$¡Á$\frac{1}{3}$=$\frac{1}{9}$£¬P£¨¦Î2=0£©=1-$\frac{1}{9}-\frac{2}{9}-\frac{1}{9}$=$\frac{5}{9}$£®
¿ÉÒÔÇóµÃËæ»ú±äÁ¿¦Î2µÄ·Ö²¼ÁÐÈç±íËùʾ£º

¦Î20124
P$\frac{5}{9}$$\frac{1}{9}$$\frac{2}{9}$$\frac{1}{9}$
¡àE¦Î2=$0+1¡Á\frac{1}{9}+2¡Á\frac{2}{9}+4¡Á\frac{1}{9}$=1£®
£¨2£©µ±${¦Î_n}={2^{n-1}}$ʱ£¬n´Î³éÈ¡ÖУ¬ÆäÖÐÒ»´ÎΪ1£¬Ê£ÏµÄn-1³éÈ¡µÄ¶¼Îª2£¬
¡àP£¨${¦Î_n}={2^{n-1}}$£©=$n¡Á\frac{1}{3}¡Á£¨\frac{1}{3}£©^{n-1}$=$\frac{n}{{3}^{n}}$£®
¹Ê´ð°¸Îª£º1£¬$\frac{n}{3^n}$£®

µãÆÀ ±¾Ì⿼²éÁË»¥Ïà¶ÔÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¼°ÆäÊýѧÆÚÍû£¬¿¼²éÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªÅ×ÎïÏßy2=2px £¨p£¾0£©ÉϵÄÒ»µãMµ½¶¨µãA£¨$\frac{7}{2}$£¬4£©ºÍ½¹µãFµÄ¾àÀëÖ®ºÍµÄ×îСֵµÈÓÚ5£¬ÔòP=3»ò1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª¼¯ºÏA={x|-1£¼x£¼3}£¬B={x|-1£¼x£¼m+1}£¬Èôx¡ÊA³ÉÁ¢µÄÒ»¸ö±ØÒª²»³ä·ÖµÄÌõ¼þÊÇx¡ÊB£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇ£¨-2£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{3}x£¬£¨x£¾0£©}\\{{3}^{x}£¬£¨x¡Ü0£©}\end{array}\right.$£¬Ôòf£¨f£¨$\frac{1}{9}$£©£©µÄÖµÊÇ$\frac{1}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®É躯Êý$f£¨x£©=\left\{\begin{array}{l}{log_2}£¨-x£©£¬x£¼0\\{2^x}£¬x¡Ý0\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©-af£¨x£©=0Ç¡ÓÐÈý¸ö²»Í¬µÄʵÊý¸ù£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[0£¬+¡Þ£©B£®£¨0£¬+¡Þ£©C£®£¨1£¬+¡Þ£©D£®[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÈçͼËıßÐÎPABCÖУ¬¡ÏPAC=¡ÏABC=90¡ã£¬$PA=AB=2\sqrt{3}£¬AC=4$£¬ÏÖ°Ñ¡÷PACÑØACÕÛÆð£¬Ê¹PAÓëƽÃæABC³É60¡ã£¬Éè´ËʱPÔÚƽÃæABCÉϵÄͶӰΪOµã£¨OÓëBÔÚACµÄͬ²à£©£¬

£¨1£©ÇóÖ¤£ºOB¡ÎƽÃæPAC£»
£¨2£©Çó¶þÃæ½ÇP-BC-A´óСµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÔ²CµÄÔ²ÐÄÓëµãP£¨-2£¬1£©¹ØÓÚÖ±Ïßy=x+1¶Ô³Æ£¬Ö±Ïß3x+4y-11=0ÓëÔ²CÏཻÓÚA£¬Bµã£¬ÇÒ|AB|=6£¬ÔòÔ²CµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®x2+£¨y+1£©2=18B£®£¨x+1£©2+y2=9C£®£¨x+1£©2+y2=18D£®x2+£¨y+1£©2=9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈçͼÊÇÒ»¸ö½á¹¹Í¼£¬ÔÚ¿ò¢ÚÖÐÓ¦ÌîÈ루¡¡¡¡£©
A£®¿Õ¼¯B£®²¹¼¯C£®×Ó¼¯D£®È«¼¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÉèµãF1¡¢F2ÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¨OΪ×ø±êÔ­µã£©£¬ÒÔOΪԲÐÄ£¬|F1F2|Ϊֱ¾¶µÄÔ²½»Ë«ÇúÏßÓÚµãM£¨µÚÒ»ÏóÏÞ£©£®Èô¹ýµãM×÷xÖáµÄ´¹Ïߣ¬´¹×ãǡΪÏ߶ÎOF2µÄÖе㣬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\sqrt{3}$-1B£®$\sqrt{3}$C£®$\sqrt{3}$+1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸